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Repeated-measures designs

Self-test answers

e Use ggplot2 to plot a bar graph (with error bars) of the time to retch with the type of
animal eaten on the x-axis.

bushBar <- ggplot(longBush, aes(Animal, Retch))

bushBar + stat_summary(fun.y = mean, geom = “bar", fill = "White", colour = "Black"™) +
stat_summary(fun.data = mean_cl_boot, geom = "pointrange') + labs(x = "Type of Animal Eaten", y
= "Mean Time to Retch (Seconds)'™)

e Use ggplot2 to plot boxplots of the time to retch after eating each animal (x-axis).

bushBoxplot <- ggplot(longBush, aes(Animal, Retch))

bushBoxplot + geom_boxplot() + labs(x = "Type of Animal Eaten", y = "Mean Time to Retch
(Seconds)™)

v" Using what you learnt earlier in the chapter and the commands that we have just used to
create drink and imagery, can you work out how to enter the data into R directly?

If we wanted to enter the data directly into R, we would first need to create the variable that identifies
participants by using the gl() function (Chapter 3). Remember that this function takes the general form:

factor<-gl(number of levels, cases in each level, total cases, labels = c("labell™, "label2".))

This function creates a factor variable called factor; you specify the number of levels or groups of the factor, how
many cases are in each level/group, optionally the total number of cases (the default is to multiply the number of
groups by the number of cases per group), and you can also use the labels option to list names for each
level/group.

For participant, we want nine scores for each of the 20 participants, so we can specify it as:
participant<-gl (20, 9, labels = c('PO1", '"P0O2', "P03'", "P04', "PO5', "PO6', "PO7', "P0O8", "P09",
p10™, *P11', *P12', P13, ''P14', "P15", "P1l6', "P17', "P18", "P19", "P20" ))

The numbers in the function tell R that we had 20 sets of nine scores, the labels option then specifies the names
to attach to these 20 sets, which correspond to their participant number. A quicker way to do this is to use the
paste() function to create the labels for you. We can execute this command instead:

participant<-gl (20, 9, labels = c(paste("P", 1:20, sep = "_")))
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The paste() function takes the things in brackets and pastes them together, the sep option specifying how to
separate the bits that have been pasted together. So the “P” means that we begin with the letter P and then we
paste a number after it separated by an underscore. The 1:20 creates a sequence of numbers from 1 to 20.
Therefore, we create a sequence of text strings that are P then an underscore then a number, where the number
starts at 1 and goes to 20. Therefore, we’ll get a sequence of strings P_1, P_2, P_3, ..., P_20. To see for yourself,
just execute the paste() function as we have specified it above:

paste(""P'", 1:20, sep = "_")

The resulting sequence is:

"P l" "P 2" "P 3" "P 4" "P 5" "P 6" "P 7" "P 8" "P 9" "P lo" "P ll" "P 12" "P 13"
np:l4n llP:lSll "P:16" "P:l7" "P:l8" "P:l9" "P:ZO" - - - - - -

Therefore, by placing this paste command within the gl/() function we automatically generate the labels for each
person, which when you have a lot of participants is quicker then typing them all in.

To create the drink variable we follow the same procedure as in the chapter. We currently have nine rows per
person that we need to identify based on levels of drink and imagery. Within each person, for each of the three
types of drink (beer, wine and water) there are three scores (positive imagery, negative imagery and neutral
imagery). Therefore, we want three groups that each contains three scores. This will create the codes within a
person, and we need these codes to be repeated for all 20 cases, and to do this we include the total number of
cases (20 cases x 9 scores per case = 180 scores). Including this information in the g/() function we would execute:

drink<-gl(3, 3, 180, labels = c('"Beer", "Wine'", "Water'))

This creates a variable drink; the numbers in the function tell R that we had three sets of three scores, the labels
option then specifies the names to attach to these three sets, which correspond to the type of drink. The 180 tells
R to repeat this sequence for 180 cases. Essentially, this will create three rows with the label Beer then three
labelled Wine, then three labelled Water, and then repeats this sequence for 180 cases.

We also need a variable that tells us the type of imagery that was used. To do this we want three sets of one
score (positive, negative, neutral). This will create three cases, or, put another way, it will create the codes for the
first level (beer) of the drink variable. We want this pattern to be repeated for the remaining two levels of drink
(i.e., wine and water). We can do this by adding a third value to the function that is the total number of cases (i.e.,
180). By specifying the total number of cases the gl() function will repeat the pattern of codes until it reaches this
total number of cases

imagery<-gl(3, 1, 180, labels = c("Positive", "Negative', "Neutral'))

If the interaction turns out to be significant and we want post hoc tests for this interaction, then it’s necessary to
have a variable that codes combinations of drink and imagery into a single variable:

groups<-gl(9, 1, labels = c( "beerpos"™, "beerneg'", "beerneut', "winepos', 'wineneg", "wineneut",
"waterpos', "waterneg', "waterneut'))

This command creates nine sets of one row and then labels them according to the nine combinations of the drink
and imagery variables.
We can add the attitude scores by creating a numeric variable in the usual way:

attitude<-c(1, 6, 5, 38, -5, 4, 10, -14, -2, 26, 27, 27, 23, -15, 14, 21, -6, O, 1, -19, -10,
28, -13, 13, 33, -2, 9, 7, -18, 6, 26, -16, 19, 23, -17, 5, 22, -8, 4, 34, -23, 14, 21, -19, O,
30, -6, 3, 32, -22, 21, 17, -11, 4, 40, -6, O, 24, -9, 19, 15, -10, 2, 15, -9, 4, 29, -18, 7,
13, -17, 8, 20, -17, 9, 30, -17, 12, 16, -4, 10, 9, -12, -5, 24, -15, 18, 17, -4, 8, 14, -11, 7,
34, -14, 20, 19, -1, 12, 43, 30, 8, 20, -12, 4, 9, -10, -13, 15, -6, 13, 23, -15, 15, 29, -1,
10, 15, 15, 12, 20, -15, 6, 6, -16, 1, 40, 30, 19, 28, -4, O, 20, -10, 2, 8, 12, 8, 11, -2, 6,
27, 5, -5, 17, 17, 15, 17, -6, 6, 9, -6, -13, 30, 21, 21, 15, -2, 16, 19, -20, 3, 34, 23, 28,
27, -7, 7, 12, -12, 2, 34, 20, 26, 24, -10, 12, 12, -9, 4)

Finally, we can merge these variables into a dataframe called longAttitude by executing:
longAttitude<-data.frame(participant, drink, imagery, groups, attitude)
The data should look like this:

participant drink imagery groups attitude
1 P01l Beer Positive beerpos 1
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2 P01 Beer
3 P01 Beer
4 P01 Wine
5 P01 Wine
6 P01 Wine
7 P01 Water
8 P01 Water
9 P01l Water
10 P02 Beer
11 P02 Beer
12 P02 Beer
13 P02 Wine
14 P02 Wine
15 P02 Wine
16 P02 Water
17 P02 Water
18 P02 Water
19 P03 Beer
20 P03 Beer
21 P03 Beer
22 P03 Wine
23 P03 Wine
24 P03 Wine
25 P03 Water
26 P03 Water
27 P03 Water
28 P04 Beer
29 P04 Beer
30 P04 Beer
31 P04 Wine
32 P04 Wine
33 P04 Wine
34 P04 Water
35 P04 Water
36 P04 Water
37 P05 Beer
38 P05 Beer
39 P05 Beer
40 P05 Wine
41 P05 Wine
42 P05 Wine
43 P05 Water
44 P05 Water
45 P05 Water
46 P06 Beer
47 P06 Beer
48 P06 Beer
49 P06 Wine
50 P06 Wine
51 P06 Wine
52 P06 Water
53 P06 Water
54 P06 Water
55 P07 Beer
56 P07 Beer
57 P07 Beer
58 P07 Wine
59 P07 Wine
60 P07 Wine
61 P07 Water
62 P07 Water
63 P07 Water
64 P08 Beer
65 P08 Beer
66 P08 Beer
67 P08 Wine
68 P08 Wine
69 P08 Wine
70 P08 Water
71 P08 Water
72 P08 Water
73 P09 Beer
74 P09 Beer
75 P09 Beer
76 P09 Wine
77 P09 Wine
78 P09 Wine
79 P09 Water
80 P09 Water
81 P09 Water
82 P10 Beer
83 P10 Beer
84 P10 Beer
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Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral

beerneg
beerneut
winepos
wineneg
wineneut
waterpos
waterneg
waterneut
beerpos
beerneg
beerneut
winepos
wineneg
wineneut
waterpos
waterneg
waterneut
beerpos
beerneg
beerneut
winepos
wineneg
wineneut
waterpos
waterneg
waterneut
beerpos
beerneg
beerneut
winepos
wineneg
wineneut
waterpos
waterneg
waterneut
beerpos
beerneg
beerneut
winepos
wineneg
wineneut
waterpos
waterneg
waterneut
beerpos
beerneg
beerneut
winepos
wineneg
wineneut
waterpos
waterneg
waterneut
beerpos
beerneg
beerneut
winepos
wineneg
wineneut
waterpos
waterneg
waterneut
beerpos
beerneg
beerneut
winepos
wineneg
wineneut
waterpos
waterneg
waterneut
beerpos
beerneg
beerneut
winepos
wineneg
wineneut
waterpos
waterneg
waterneut
beerpos
beerneg
beerneut
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85 P10 Wine
86 P10 Wine
87 P10 Wine
88 P10 Water
89 P10 Water
90 P10 Water
91 P11 Beer
92 P11 Beer
93 P11 Beer
94 P11 Wine
95 P11 Wine
96 P11 Wine
97 P11 Water
98 P11 Water
99 P11 Water
100 P12 Beer
101 P12 Beer
102 P12 Beer
103 P12 Wine
104 P12 Wine
105 P12 Wine
106 P12 Water
107 P12 Water
108 P12 Water
109 P13 Beer
110 P13 Beer
111 P13 Beer
112 P13 Wine
113 P13 Wine
114 P13 Wine
115 P13 Water
116 P13 Water
117 P13 Water
118 P14 Beer
119 P14 Beer
120 P14 Beer
121 P14 Wine
122 P14 Wine
123 P14 Wine
124 P14 Water
125 P14 Water
126 P14 Water
127 P15 Beer
128 P15 Beer
129 P15 Beer
130 P15 Wine
131 P15 Wine
132 P15 Wine
133 P15 Water
134 P15 Water
135 P15 Water
136 P16 Beer
137 P16 Beer
138 P16 Beer
139 P16 Wine
140 P16 Wine
141 P16 Wine
142 P16 Water
143 P16 Water
144 P16 Water
145 P17 Beer
146 P17 Beer
147 P17 Beer
148 P17 Wine
149 P17 Wine
150 P17 Wine
151 P17 Water
152 P17 Water
153 P17 Water
154 P18 Beer
155 P18 Beer
156 P18 Beer
157 P18 Wine
158 P18 Wine
159 P18 Wine
160 P18 Water
161 P18 Water
162 P18 Water
163 P19 Beer
164 P19 Beer
165 P19 Beer
166 P19 Wine
167 P19 Wine
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Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative
Neutral
Positive
Negative

winepos
wineneg
wineneut
waterpos
waterneg
waterneut
beerpos
beerneg
beerneut
winepos
wineneg
wineneut
waterpos
waterneg
waterneut
beerpos
beerneg
beerneut
winepos
wineneg
wineneut
waterpos
waterneg
waterneut
beerpos
beerneg
beerneut
winepos
wineneg
wineneut
waterpos
waterneg
waterneut
beerpos
beerneg
beerneut
winepos
wineneg
wineneut
waterpos
waterneg
waterneut
beerpos
beerneg
beerneut
winepos
wineneg
wineneut
waterpos
waterneg
waterneut
beerpos
beerneg
beerneut
winepos
wineneg
wineneut
waterpos
waterneg
waterneut
beerpos
beerneg
beerneut
winepos
wineneg
wineneut
waterpos
waterneg
waterneut
beerpos
beerneg
beerneut
winepos
wineneg
wineneut
waterpos
waterneg
waterneut
beerpos
beerneg
beerneut
winepos
wineneg
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168 P19 Wine Neutral wineneut 7
169 P19 Water Positive waterpos 12
170 P19 Water Negative waterneg -12
171 P19 Water Neutral waterneut 2
172 P20 Beer Positive beerpos 34
173 P20 Beer Negative beerneg 20
174 P20 Beer Neutral beerneut 26
175 P20 Wine Positive winepos 24
176 P20 Wine Negative wineneg -10
177 P20 Wine Neutral wineneut 12
178 P20 Water Positive waterpos 12
179 P20 Water Negative waterneg -9
180 P20 Water Neutral waterneut 4

v' Use ggplot2 to plot boxplots of the attitude scores for each type of drink (x-axis) after adverts
using different imagery (different plots).

attitudeBoxplot <- ggplot(longAttitude, aes(drink, attitude))

attitudeBoxplot + geom_boxplot() + facet wrap(~imagery, nrow = 1) + labs(x = "Type of Drink", y
= "Mean Preference Score')

v' Using ggplot2 and stat.desc, plot an error bar graph and get the means for the main effect of
drink.

Graph:
drinkBar <- ggplot(longAttitude, aes(drink, attitude))

drinkBar + stat_summary(fun.y = mean, geom = "bar™, fill = "White", colour = "Black') +
stat_summary(fun.data = mean_cl_boot, geom = "pointrange’™) + labs(x = "Type of Drink', y = "Mean
Attitude™)

Descriptive statistics:

by(longAttitude$attitude, longAttitude$drink, stat.desc, basic = FALSE)

v' Using ggplot2 and stat.desc, plot an error bar graph and get the means for the main effect of
imagery.

imageryBar <- ggplot(longAttitude, aes(imagery, attitude))

imageryBar + stat_summary(fun.y = mean, geom = "bar™, fill = "White", colour = "Black') +
stat_summary(fun.data = mean_cl_boot, geom = *"pointrange'™) + labs(x = "Type of Imagery”, y =
"Mean Attitude™)

Descriptive statistics:

by(longAttitude$attitude, longAttitude$imagery, stat.desc, basic = FALSE)

v' Using ggplot2, plot a line graph with error bars of the means for the drink x imagery
interaction.

attitudelnt <- ggplot(longAttitude, aes(drink, attitude, colour = imagery))

attitudelnt + stat_summary(fun.y = mean, geom = "point') + stat_summary(fun.y = mean, geom =
“line", aes(group= imagery)) + stat_summary(fun.data = mean_cl_boot, geom = “errorbar', width =
0.2) + labs(x = "Type of Drink'™, y = "Mean Attitude"™, colour = "Type of Imagery')
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Oliver Twisted

Please Sir, can | have some more ... sphericity?

The following article appears in:

’p\%‘ Field, A. P. (1998). A bluffer’s guide to sphericity. Newsletter of the Mathematical, Statistical and
l.+* Computing Section of the British Psychological Society, 6(1), 13-22

It appears in adapted form below.

A bluffer’s guide to sphericity

The use of repeated measures, where the same subjects are tested under a number of conditions, has numerous
practical and statistical benefits. For one thing it reduces the error variance caused by between-group individual
differences; however, this reduction of error comes at a price because repeated-measures designs potentially
introduce covariation between experimental conditions (this is because the same people are used in each
condition and so there is likely to be some consistency in their behaviour across conditions). In between-group
ANOVA we have to assume that the groups we test are independent for the test to be accurate (Scariano &
Davenport, 1987, have documented some of the consequences of violating this assumption). As such, the
relationship between treatments in a repeated-measures design creates problems with the accuracy of the test
statistic. The purpose of this article is to explain, as simply as possible, the issues that arise in analysing repeated-
measures data with ANOVA: specifically, what is sphericity and why is it important?

What is Sphericity?
Most of us are taught during our degrees that it is crucial to have homogeneity of variance between conditions
when analysing data from different subjects, but often we are left to assume that this problem ‘goes away’ in
repeated-measures designs. This is not so, and the assumption of sphericity can be likened to the assumption of
homogeneity of variance in between-group ANOVA.

Sphericity (denoted by € and sometimes referred to as circularity) is a more general condition of compound
symmetry. Imagine you had a population covariance matrix Z, where:

- -
Sy A, Qg ay,
2
Oy Sp Ay Uy,
_ 2
Y= Ay Oy Sz Ay,
52
_anl anz ans nn _|
Equation 1

This matrix represents two things: (1) the off-diagonal elements represent the covariances between the
treatments 1, ..., n (you can think of this as the unstandardized correlation between each of the repeated-
measures conditions); and (2) the diagonal elements signify the variances within each treatment. As such, the
assumption of homogeneity of variance between treatments will hold when:

Equation 2

(i.e. when the diagonal components of the matrix are approximately equal). This is comparable to the situation
we would expect in a between-group design. However, in repeated-measures designs there is the added
complication that the experimental conditions covary with each other. The end result is that we have to consider
the effect of these covariances when we analyse the data, and specifically we need to assume that all of the
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covariances are approximately equal (i.e. all of the conditions are related to each other to the same degree and
so the effect of participating in one treatment level after another is also equal). Compound symmetry holds when
there is a pattern of constant variances along the diagonal (i.e. homogeneity of variance — see Equation 2) and
constant covariances off of the diagonal (i.e. the covariances between treatments are equal — see Equation 3).
While compound symmetry has been shown to be a sufficient condition for conduction ANOVA on repeated-
measures data, it is not a necessary condition.

ad, RO, ~*AA,, R..A

13 23 ra

12 1n 2n

Equation 3

Sphericity is a less restrictive form of compound symmetry (in fact much of the early research into repeated-
measures ANOVA confused compound symmetry with sphericity). Sphericity refers to the equality of variances of
the differences between treatment levels. Whereas compound symmetry concerns the covariation between
treatments, sphericity is related to the variance of the differences between treatments. So, if you were to take
each pair of treatment levels, and calculate the differences between each pair of scores, then it is necessary that
these differences have equal variances. Imagine a situation where there are 4 levels of a repeated-measures
treatment (A, B, C, D). For sphericity to hold, one condition must be satisfied:

Equation 4

Sphericity is violated when the condition in Equation 4 is not met (i.e. the differences between pairs of conditions
have unequal variances).

How is Sphericity Measured?

The simplest way to see whether or not the assumption of sphericity has been met is to calculate the differences
between pairs of scores in all combinations of the treatment levels. Once this has been done, you can simply
calculate the variance of these differences. E.g. Table 1 shows data from an experiment with 3 conditions (for
simplicity there are only 5 scores per condition). The differences between pairs of conditions can then be
calculated for each subject. The variance for each set of differences can then be calculated. We saw above that
sphericity is met when these variances are roughly equal. For this data, sphericity will hold when:

where:
sz , =157
s2 . =103
si . =103
As such,
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Condition A Condition B Condition C A-B A-C B-C
10 12 8 -2 2 5
15 15 12 0 3 3
25 30 20 -5 5 10
35 30 28 5 7 2
30 27 20 3 10 7
Variance: 15.7 10.3 10.3

Table 1: Hypothetical data to illustrate the calculation of the variance of the differences between conditions.

So there is at least some deviation from sphericity because the variance of the differences between conditions A
and B is greater than the variance of the differences between conditions A and C, and between B and C. However,
we can say that this data has local circularity (or local sphericity) because two of the variances are identical. This
means that for any multiple comparisons involving these differences, the sphericity assumption has been met (for
a discussion of local circularity see Rouanet & Lépine, 1970). The deviation from sphericity in the data in Table 1
does not seem too severe (all variances are roughly equal). This raises the issue of how we assess whether
violations from sphericity are severe enough to warrant action.

Assessing the Severity of Departures from Sphericity

Luckily the advancement of computer packages makes it needless to ponder the details of how to assess
departures from sphericity. SPSS produces a test known as Mauchly’s test, which tests the hypothesis that the
variances of the differences between conditions are equal. Therefore, if Mauchly’s test statistic is significant (i.e.
has a probability value less than .05) we must conclude that there are significant differences between the
variance of differences, ergo the condition of sphericity has not been met. If, however, Mauchly’s test statistic is
non-significant (i.e. p > .05) then it is reasonable to conclude that the variances of differences are not significantly
different (i.e. they are roughly equal). So, in short, if Mauchly’s test is significant then we must be wary of the F-
ratios produced by the computer.

Mauchh/'s Test of Sphericity®

Measure: MEASURE_1

Within .
Subjects Mauchly's Appro Epsilon

Effect W Chi-Square df Sig Greenhouse-Geisser Huynh-Feldt | Lower-bound
FACTOR1 011 13.485 2 no1 503 506 500

Tests the null hypothesis that the ermor covariance matrx of the orthonormalized transformed dependent variables is
proportional to an identity matrx

a. Design: Intercept
Within Subjects Design: FACTOR1

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are
displayed in the layers (by default) of the Tests of Within Subjects Effects table

Figure 1: Output of Mauchly’s test from SPSS version 7.0

Figure 1 shows the result of Mauchly’s test on some fictitious data with three conditions (A, B and C). The result
of the test is highly significant, indicating that the variance between the differences were significantly different.
The table also displays the degrees of freedom (the df are simply N—1, where N is the number of variances
compared) and three estimates of sphericity (see section on correcting for sphericity).
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What is the Effect of Violating the Assumption of Sphericity?

Rouanet and Lépine (1970) provided a detailed account of the validity of the F-ratio when the sphericity
assumption does not hold. They argued that there are two different F-ratios that can be used to assess treatment
comparisons. The two types of F-ratio were labelled F’and F”respectively. F’refers to an F-ratio derived from the
mean squares of the comparison in question and the interaction of the subjects with that comparison (i.e. the
specific error term for each comparison is used — this is the F-ratio normally used). F”is derived not from the
specific error mean square but from the total error mean squares for all of the repeated-measures comparisons.
Rouanet and Lépine (1970) argued that F’ is less powerful than F”and so it may be the case that this test statistic
misses genuine effects. In addition, they showed that for F” to be valid the covariation matrix, , must obey local
circularity (i.e. sphericity must hold for the specific comparison in question) and Mendoza, Toothaker and Crain
(1976) have supported this by demonstrating that the F-ratios of an L x J x K factorial design with two repeated-
measures are valid only if local circularity holds. F” requires only overall circularity (i.e. the whole data set must
be circular) but because of the non-reciprocal nature of circularity and compound symmetry, F” does not require
compound symmetry whilst F' does. So, given that F” is the statistic generally used, the effect of violating
sphericity is a loss of power (compared to when F” is used) and a test statistic (F-ratio) which simply cannot be
validly compared to tabulated values of the F-distribution.

Correcting for Violations of Sphericity

If data violates the sphericity assumption there are a number of corrections that can be applied to produce a valid
F-ratio. SPSS produces three corrections based upon the estimates of sphericity advocated by Greenhouse and
Geisser (1959) and Huynh and Feldt (1976). Both of these estimates give rise to a correction factor that is applied
to the degrees of freedom used to assess the observed value of F. How each estimate is calculated is beyond the
scope of this article; for our purposes, all we need know is that each estimate differs slightly from the others. The

Greenhouse—Geisser estimate (usually denoted as €) varies between 1/(k—1) (where k is the number of

repeated-measures conditions) and 1. The closer that € is to 1.00, the more homogeneous are the variances of
differences, and hence the closer the data are to being spherical. Figure 1 shows a situation with three conditions

and hence the lower limit of € is 0.5; it is clear that the calculated value of € is 0.503 which is very close to 0.5

and so represents a substantial deviation from sphericity. Huynh and Feldt (1976) reported that when € > 0.75
too many false null hypotheses fail to be rejected (i.e. the test is too conservative) and Collier, Baker, Mandeville

& Hayes (1967) showed that this was also true with £ as high as 0.90. Huynh and Feldt, therefore, proposed a
correction to € (usually denoted as 5) to make it less conservative. However, Maxwell and Delaney (1990)
report that & actually overestimates sphericity. Stevens (1992) therefore recommends taking an average of the
two and adjusting the df by this averaged value. Girden (1992) recommends that when & > 0.75 then the df

should be corrected using E; if £ <0.75, or nothing is known about sphericity at all, then the conservative &
should be used to adjust the df.

Tests of Within-Subjects Effects

Type lll

Sum of Mean Mancent. Ohserved

Measure Source Sguares df Square F Sig. Farameter Power’

MEASURE_1  Sphericity Assumed FACTOR1 28945.600 2 (1447800 5245 035 10.489 BBZ
ErronFACTORT) |2208.400 g | 276.050

Greenhouse-Geisser  FACTOR1 28945.600 1.006 |2879.437 5245 083 5274 418
Error(FACTORTY | 2208.400 4022 | 549.018

Huynh-Feldt FACTOR 28945.600 1.011 |2863.394 f.245 083 5304 420
Error(FACTORT) |2208.400 4045 | 5459458

Lowwer-hound FACTOR1 28945.600 1.000 | 2895600 5245 .0g4 5.244 AT
ErrorFACTORT) |2208.400 4.000 | 552100

a. Computed using alpha= .05

Figure 2: Output of epsilon corrected F-values from SPSS version 7.0.
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Figure 2 shows a typical ANOVA table for a set of data that violated sphericity (the same data used to generate
Figure 1). The table in Figure 2 shows the F-ratio and associated degrees of freedom when sphericity is assumed;
as can be seen, this results in a significant F-statistic indicating some difference(s) between the means of the
three conditions. Underneath are the corrected values (for each of the three estimates of sphericity). Notice that
in all cases the F-ratios remain the same, it is the degrees of freedom that change (and hence the critical value of
F). The degrees of freedom are corrected by the estimate of sphericity. How this is done can be seen in Table 2.
The new degrees of freedom are then used to ascertain the critical value of F. For this data this results in the
observed F being non-significant at p < 0.05. This particular data set illustrates how important it is to use a valid
critical value of F; it can mean the difference between a statistically significant result and a non-significant result.

More importantly, it can mean the difference between making a Type | error and not.
Estimate of Value of Term df Correction New df
Sphericity Used Estimate

None Effect 2

Error 8
0.503 Effect 2 0.503x 2 1.006
Error 8 0.503x8 4.024
0.506 Effect 2 0.506 % 2 1.012
Error 8 0.506x 8 4.048

Table 2: Shows how the sphericity corrections are applied to the degrees of freedom.

Multivariate vs. Univariate Tests

A final option, when you have data that violates sphericity, is to use multivariate test statisticc (MANOVA)
because they are not dependent upon the assumption of sphericity (see O’Brien & Kaiser, 1985). There is a trade-
off of test power between univariate and multivariate approaches although some authors argue that this can be
overcome with suitable mastery of the techniques (O’Brien & Kaiser, 1985). MANOVA avoids the assumption of
sphericity (and all the corresponding considerations about appropriate F ratios and corrections) by using a specific
error term for contrasts with 1 df, and hence each contrast is only ever associated with its specific error term
(rather than the pooled error terms used in ANOVA). Davidson (1972) compared the power of adjusted univariate
techniques with those of Hotellings T (@ MANOVA test statistic) and found that the univariate technique was
relatively powerless to detect small reliable changes between highly correlated conditions when other less
correlated conditions were also present. Mendoza, Toothaker and Nicewander (1974) conducted a Monte Carlo
study comparing univariate and multivariate techniques under violations of compound symmetry and normality
and found that ‘as the degree of violation of compound symmetry increased, the empirical power for the
multivariate tests also increased. In contrast, the power for the univariate tests generally decreased’ (p. 174).
Maxwell and Delaney (1990) noted that the univariate test is relatively more powerful than the multivariate test
as n decreases and proposed that ‘the multivariate approach should probably not be used if n is less than a + 10
(a is the number of levels for repeated-measures)’ (p. 602). As a general rule it seems that when you have a large
violation of sphericity (£ < 0.7) and your sample size is greater than a + 10 then multivariate procedures are more
powerful whilst with small sample sizes or when sphericity holds (¢ > 0.7) the univariate approach is preferred
(Stevens, 1992). It is also worth noting that the power of MANOVA increases and decreases as a function of the
correlations between dependent variables (Cole, Maxwell, Arvey, & Salas, 1994) and so the relationship between
treatment conditions must be considered also.

Multiple Comparisons

So far, | have discussed the effects of sphericity on the omnibus ANOVA. As a final flurry some discussion of the
effects on multiple comparison procedures is warranted. Boik (1981) provided an estimable account of the effects
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of non-sphericity on a priori tests in repeated-measures designs, and concluded that even very small departures
from sphericity produce large biases in the F-test and recommends against using these tests for repeated-
measures contrasts. When experimental error terms are small, the power to detect relatively strong effects can
be as low as .05 (when sphericity = .80). He argues that the situation for a priori comparisons cannot be improved
and concludes by recommending a multivariate analogue. Mitzel and Games (1981) found that when sphericity
does not hold (& < 1) the pooled error term conventionally employed in pairwise comparisons resulted in non-
significant differences between two means declared significant (i.e. a lenient Type 1 error rate) or undetected
differences (a conservative Type 1 error rate). They therefore recommended the use of separate error terms for
each comparison. Maxwell (1980) systematically tested the power and alpha levels for 5 a priori tests under
repeated-measures conditions. The tests assessed were Tukey’s wholly significant difference (WSD) test which

uses a pooled error term, Tukey’s procedure but with a separate error term with either (N —1) df [labelled SEP1]
or (n —1)(k —1) df [labelled SEP2], Bonferroni’s procedure (BON), and a multivariate approach — the Roy—Bose

simultaneous confidence interval (SCl). Maxwell tested these a priori procedures varying the sample size, number
of levels of the repeated factor and departure from sphericity. He found that the multivariate approach was
always ‘too conservative for practical use’ (p. 277) and this was most extreme when n (the number of subjects) is
small relative to k (the number of conditions). Tukey’s test inflated the alpha rate as the covariance matrix
departs from sphericity and even when a separate error term was used (SEP1) alpha was slightly inflated as k
increased whilst SEP2 also lead to unacceptably high alpha levels. The Bonferroni method, however, was
extremely robust (although slightly conservative) and controlled alpha levels regardless of the manipulation.
Therefore, in terms of Type | error rates the Bonferroni method was best. In terms of test power (the Type Il error
rate) for a small sample (n = 8) WSD was the most powerful under conditions of non-sphericity. This advantage
was severely reduced when n = 15. Keselman and Keselman (1988) extended Maxwell’'s work and also
investigated unbalanced designs. They too used Tukey’s WSD, a modified WSD (with non-pooled error variance),
Bonferroni t-statistics, and a multivariate approach, and looked at the same factors as Maxwell (with the addition
of unequal samples). They found that when unweighted means were used (with unbalanced designs) none of the
four tests could control the Type 1 error rate. When weighted means were used only the multivariate tests could
limit alpha rates although Bonferroni t-statistics were considerably better than the two Tukey methods. In terms
of power, they concluded that ‘as the number of repeated treatment levels increases, BON is substantially more
powerful than SCI’ (p. 223).

So, in terms of these studies, the Bonferroni method seems to be generally the most robust of the univariate
techniques, especially in terms of power and control of the Type | error rate.
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Conclusion

It is more often the rule than the exception that sphericity is violated in repeated-measures designs. For this
reason, all repeated-measures designs should be exposed to tests of violations of sphericity. If sphericity is
violated then the researcher must decide whether a multivariate or univariate analysis is preferred (with due
consideration to the trade-off between test validity on one hand and power on the other). If univariate methods
are chosen then the omnibus ANOVA must be corrected appropriately, depending on the level of departure from
sphericity. Finally, if pairwise comparisons are required the Bonferroni method should probably be used to
control the Type 1 error rate. Finally, to ensure that the group sizes are equal otherwise even the Bonferroni
technique is subject to inflations of alpha levels.
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Labcoat Leni’s real research
Who’s afraid of the big bad wolf?

Problem

Field, A. P. (2006). Journal of Abnormal Psychology, 115(4), 742—752.

I’'m going to let my ego get the better of me and talk about some of my own research. When I’'m
not scaring my students with statistics, | scare small children with Australian marsupials. There is
a good reason for doing this, which is to try to discover how children develop fears (which will
help us to prevent them). Most of my research looks at the effect of giving children
information about animals or situations that are novel to them (rather like a parent, teacher
or TV show would do). In one particular study (Field, 2006), | used three novel animals (the
quoll, quokka and cuscus) and children were told negative things about one of the animals,
positive things about another, and were given no information about the third (our control). |
then asked the children to place their hands in three wooden boxes each of which they believed contained one of
the aforementioned animals. My hypothesis was that they would take longer to place their hand in the box
containing the animal about which they had heard negative information.

The data from this part of the study are in the file Field(2006).dat. Labcoat Leni wants you to carry out a one-
way repeated-measures ANOVA on the times taken for children to place their hands in the three boxes (negative
information, positive information, no information). First, draw an error bar graph of the means, then do some
normality tests on the data, then do a log transformation on the scores, and do the ANOVA on these log-
transformed scores (if you read the paper you’ll notice that | found that the data were not normal, so | log-
transformed them before doing the ANOVA). Do children take longer to put their hands in a box that they believe
contains an animal about which they have been told nasty things?
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Solution

As you will be well aware by now, we first need to read in the data:
fieldData<-read.delim("'Field(2006) .dat"”, header = TRUE)

If you execute the dataframe name fieldData you will see that the data have originally been entered
into SPSS in the wide format. However, do conduct this analysis in R we need the data to be in the
long format. To convert the data we can use the melt function as in the book chapter and your
command might look like this:

longField <-melt(fieldData, id = "code", measured = c("bhvneg", "bhvpos", "bhvnone™))
names(longField)<-c(*"code", "Information', "Approach™)

longField$Information<-factor(longField$Information, labels = c('Negative",
"Positive'", "None™))
longField<-longField[order(longField$code),]

If you now execute the dataframe name longField you will see that the data are now in the long
format. | have changed the labels from bhvneg, bhvpos and bhvnone to Negative, Positive and None
because | think it is then clearer what they represent.

We can now plot an error bar graph using the longField dataframe by executing:

fieldBar <- ggplot(longField, aes(Information, Approach))

fieldBar + stat_summary(fun.y = mean, geom = "bar™, Ffill = "White", colour = "Black')
+ stat_summary(fun.data = mean_cl_boot, geom = "pointrange’™) + labs(x = "Type of
Information Given About the Animal™, y = "Mean Time to Approach Animal (Seconds)') +
coord_cartesian(ylim=c(0,10)) + scale_y_ continuous(breaks = 1:10)

Notice that | have added + coord_cartesian(ylim=c(0,10)) + scale_y_continuous(breaks = 1:10). This
line of code specifies the scale of the y-axis to be from 0 to 10, which is a more appropriate scale for
this particular graph than the default, which was something like 0-25. Basically, because the longest
mean time is around 6.4 it seems silly to have a scale that goes up to 25; the graph is clearer with a
shorter scale. | have also included breaks from 1 to 10, this makes the graph easier to read. The
resulting graph should look like this:
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T T T
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Type of Information Given About the Animal

Next we can test for normality using the Shapiro—Wilk test (see Chapter 5). We need to use the by()
function to conduct the Shapiro—Wilk test for approach time split by type of information. We would
execute:
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by(data=longField$Approach, INDICES=longField$Information, FUN=shapiro.test)

longFieldsInformation: Negative
Shapiro-Wilk normality test

data: ddlx, ]
W = 0.8351, p-value = 1.313e-10

longFieldSInformation: Positive
Shapiro-Wilk normality test

data: dd[x, ]
W = 0.5736, p-value < 2.2e-16

longField$Information: None
Shapiro-Wilk normality test

data: dd[x, ]
W = 0.6098, p-value < 2.2e-16

The resulting output above indicates that the data are very heavily non-normal as the p-values are all
highly significant.

We could also look at some Q-Q plots for each of the information groups (negative, positive and
none). To do this we need to use the original dataframe fieldData because it was entered in the wide
format, which is the correct format for plotting separate plots for the different information groups.

To plot the Q-Q plots we would execute the following commands one at a time (remember that the
variable names in fieldData were bhvneg, bhvpos and bhvnone, rather than positive, negative and
none):

gplot(sample = fieldDatas$bhvneg, stat=''qq')
gplot(sample = fieldData$bhvpos, stat=''qq')
gplot(sample = fieldData$bhvnone, stat="qq")

sample
sample

l
El 0 - 0
theoretical theoretical
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sample

theoretical

The resulting Q-Q plots suggest that the data are very heavily skewed. This will be, in part, because if
a child didn’t put their hand in the box after 15 seconds we gave them a score of 15 and asked them
to move on to the next box (this was for ethical reasons: if a child hadn’t put their hand in the box
after 15 s we assumed that they did not want to do the task).

To log-transform the scores we need to execute the following commands one at a time:

fieldData$logneg <- log(fieldData$bhvneg + 1)
fieldData$logpos <- log(fieldDatas$bhvpos + 1)
fieldData$lognone <- log(fieldDatasbhvnone + 1)

As you can see, in the above code we used the fieldData dataframe because to be able to log-
transform each of the types of information variables we needed the data to be in the wide format. If
you now execute fieldData, you will see that three variables have been added to the dataframe
logneg, logpos and lognone.

We can then rerun the Shapiro—Wilk test on these transformed scores by executing:

shapiro.test(fieldData$logneg)
shapiro.test(fieldData$logpos)
shapiro.test(fieldData$lognone)

> shapiro.test (fieldData$logneg)
Shapiro-Wilk normality test

data: fieldDataSlogneg
W = 0.9669, p-value = 0.003371

> shapiro.test (fieldData$logpos)
Shapiro-Wilk normality test

data: fieldDataS$logpos
W = 0.8675, p-value = 2.801e-09

> shapiro.test (fieldData$lognone)
Shapiro-Wilk normality test

data: fieldDataS$lognone
W = 0.8296, p-value = 8.109e-11

These are all still significant, suggesting that the data are still not normal. If you look at the Field
(2006) paper, you will see that once the data were log-transformed, the data were found to be
normal. However, in the Field (2006) paper | used the Kolmogorov—Smirnov (KS) test for normality
whereas | have used the Shapiro—Wilk test here. Various studies have found that, even in this
corrected form, the KS test is less powerful for testing normality than the Shapiro-Wilk test
(Stephens, 1974).
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What we can do is conduct a robust ANOVA on these data. Remember that to conduct a robust
ANOVA we need the data to be in the wide format, therefore we will need to use the original
dataframe fieldData.

First, we need to get rid of the code variable in the fieldData dataframe because we want only the
scores. To do this we could create a new data frame (fieldData2) that excludes this first column by
executing:

fieldData2<-fieldData[, -c(1)]
We can now do a one-way repeated measures ANOVA based on trimmed means by executing:
rmanova(fieldData2)

[1] "The number of groups to be compared is"
[1] 3

Stest

[1] 78.15207

s$df
[1] 1.241041 94.319122

$siglevel
[1] 6.661338e-16

Stmeans
[1] 5.154675 2.164935 2.296753

Sehat
[1] 0.6174746

Setil
[1] 0.6205205

In the output above we are given a test statistic, F, for the effect of information (Stest), the degrees of
freedom (Sdf), the p-value (Ssiglevel), the group means (Stmeans). Given that the significance level is
much less than .05, we can say that there were significant differences in approach times after hearing
different types of information, F(1.24, 94.32) = 78.15, p < .001.

Assuming we leave the default options, to run post hoc tests based on a 20% trimmed mean, we
execute:

rmmcp(FieldData2)
Stest

Group Group test p.value p.crit se
[1,] 1 2 8.464641 1.417089%9e-12 0.0169 0.2853735
[2,1] 1 3 7.068277 6.528487e-10 0.0250 0.2928762
[3,] 2 3 -2.528902 1.351455e-02 0.0500 0.0814480
Spsihat

Group Group psihat ci.lower ci.upper
[1,] 1 2 2.4155844 1.7169548 3.114213982
[2,1] 1 3 2.0701299 1.3531329 2.787126862
[3,] 2 3 -0.2059740 -0.4053687 -0.006579304
Scon

[,1]
[1,] 0
$num.sig
[1] 3

The output shows the post hoc tests based on trimmed means. If the value of p.value is less than the
critical value (p.crit) and the confidence interval does not cross zero then the comparison is
significant. The columns labelled group tells you which groups are being compared (the numbers
relate to the columns in the dataframe.

v' [1,] tests the difference between negative information and positive information. This
contrast is significant because p.value (.00) is less than p.crit (.02) and the confidence interval
does not cross zero.

v' [2,] tests the difference between negative information and no information. This contrast is
significant because p.value (.00) is less than p.crit (.03) and the confidence interval does not
Cross zero.
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v' [3,] tests the difference between negative information and positive information. This
contrast is significant because p.value (.01) is less than p.crit (.05) and the confidence interval
does not cross zero.

We could report that a child took longer to place their hand in the box that they believed contained
an animal about which they had heard bad things compared to the boxes that they believed
contained animals that they had heard positive information about, ¥ = 2.42 (1.72, 3.11), p < .001, or
no information ¥ = 2.07 (1.35, 2.79), p < .001. There was also a significant difference between the
approach times for the ‘positive information’ and ‘no information’ boxes in that children took longer
to place their hand in the box that they believed contained an animal about which they had heard no
information compared to a box containing an animal about which they had heard positive
information, ¥ = -0.21 (-0.41, —0.01), p < .05.

Smart Alex’s solutions
Task 1

e Students often worry about the consistency of marking between lecturers. Lecturers obtain
reputations for being ‘hard’ or ‘light’ markers (or to use the students’ terminology, ‘evil
manifestations from Beelzebub’s bowels’ and ‘nice people’), but there is often little to
substantiate these reputations. A group of students investigated the consistency of marking
by submitting the same essays to four different lecturers. The mark given by each lecturer
was recorded for each of the eight essays. This design is repeated measures because every
lecturer marked every essay. The independent variable was the lecturer who marked the
report and the dependent variable was the percentage mark given. The data are in the file
TutorMarks.dat. Conduct a one-way ANOVA on these data by hand.

Data for essay marks example:

Tutor 1 Tutor 2 Tutor 3 Tutor 4
Essay (Professor (Professor (Professor (Professor Mean s
Field) Smith) Scrote) Death)
1 62 58 63 64 61.75 6.92
2 63 60 68 65 64.00 11.33
3 65 61 72 65 65.75 20.92
4 68 64 58 61 62.75 18.25
5 69 65 54 59 61.75 43.58
6 71 67 65 50 63.25 84.25
7 78 66 67 50 65.25 132.92
8 75 73 75 45 67.00 | 216.00
Mean | 68.875 64.25 65.25 57.375

There were eight essays, each marked by four different lecturers. Their marks are shown in the table.
In addition, the mean mark given by each lecturer is shown in the table, and also the mean mark that
each essay received and the variance of marks for a particular essay. Now, the total variance within
essays will in part be caused by the fact that different lecturers are harder or softer markers (the
manipulation), and will, in part, be caused by the fact that the essays themselves will differ in quality
(individual differences).

The total sum of squares (SSt)
Remember from one-way independent ANOVA that SS; is calculated using the following equation:

SST = Sérand (N - 1)
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Well, in repeated-measures designs the total sum of squares is calculated in exactly the same way.
The grand variance in the equation is simply the variance of all scores when we ignore the group to
which they belong. So if we treated the data as one big group it would look as follows:

62 58 63 64
63 60 68 65
65 61 72 65
68 64 58 61
69 65 54 59
71 67 65 50
78 66 67 50
75 73 75 45

Grand Mean = 63.9375

The variance of these scores is 55.028 (try this on your calculator). We used 32 scores to generate this
value, and so N is 32. As such the equation becomes:

SST = Sérand (N - 1)

=55.028(32-1)
=1705.868

The degrees of freedom for this sum of squares, as with the independent ANOVA will be N—1, or 31.

The within-participant sum of squares (SSw)

The crucial variation in this design is that there is a variance component called the within-participant
variance (this arises because we’ve manipulated our independent variable within each participant).
This is calculated using a sum of squares. Generally speaking, when we calculate any sum of squares
we look at the squared difference between the mean and individual scores. This can be expressed in
terms of the variance across a number of scores and the number of scores on which the variance is
based. For example, when we calculated the residual sum of squares in independent ANOVA (SSg) we
used the following equation:

SSk =2(x1_3_ci)2

=s%(n-1)

This equation gave us the variance between individuals within a particular group, and so is an
estimate of individual differences within a particular group. Therefore, to get the total value of
individual differences we have to calculate the sum of squares within each group and then add them
up:

2 2 2
SSR = sgroupl (nl _1) + Sgroup2 (nZ _1) + SgroupB (713 _1)

This is all well and good when we have different people in each group, but in repeated-measures
designs we’ve subjected people to more than one experimental condition, and therefore we’re
interested in the variation not within a group of people (as in independent ANOVA) but within an
actual person. That is, how much variability is there within an individual? To find this out we actually
use the same equation but we adapt it to look at people rather than groups. So, if we call this sum of
squares SSy (for within-participant SS) we could write it as:

2 2 2 2
SSW = Spersonl (1’[1 - 1) + SpersonZ(nZ - 1) + Sperson3 (1’13 - 1) -t Spersonn(nn - 1)

This equation simply means that were looking at the variation in an individual’s scores and then
adding these variances for all the people in the study. Some of you may have noticed that, in our
example, we’re using essays rather than people, and so to be pedantic we’d write this as:

2 2 2 2
SSW = sessayl (7’[1 - 1) + sessayZ (7’[2 - 1) + Sessay3 (7’[3 - 1) -t Sessayn (nn - 1)
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The ns simply represent the number of scores on which the variances are based (i.e. the number of
experimental conditions, or in this case the number of lecturers). All of the variances we need are in
the table, so we can calculate SSy, as:

SSy = sgssayl (n-1)+ S§ssay2 (n,-1)+ Sgssay?) (n3=1)...+ sgssayn (n, —1)
=(6.92)(4—1) + (11.33)(4 - 1) + (20.92)(4 — 1) + (18.25)(4 — 1)
+(43.58)(4—1) + (84.25)(4 - 1)+ (132.92)(4 - 1) + (216)(4 - 1)
=20.76 + 34 + 62.75 + 54.75 +130.75 + 252.75 + 398.75 + 648
=1602.5

The degrees of freedom for each person are n—1 (i.e. the number of conditions minus 1). To get the
total degrees of freedom we add the df for all participants. So, with eight participants (essays) and
four conditions (i.e. n = 4) we get 8 x 3 = 24 degrees of freedom.

The model sum of squares (SSy)

So far, we know that the total amount of variation within the data is 1705.868 units. We also know
that 1602.5 of those units are explained by the variance created by individuals’ (essays’)
performances under different conditions. Now some of this variation is the result of our experimental
manipulation and some of this variation is simply random fluctuation. The next step is to work out
how much variance is explained by our manipulation and how much is not.

In independent ANOVA, we worked out how much variation could be explained by our experiment
(the model sum of squares) by looking at the means for each group and comparing these to the
overall mean. So, we measured the variance resulting from the differences between group means and
the overall mean. We do exactly the same thing with a repeated-measures design. First we calculate
the mean for each level of the independent variable (in this case the mean mark given by each
lecturer) and compare these values to the overall mean of all marks. So, we calculate this sum of
squares in the same way as for independent ANOVA:

1. Calculate the difference between the mean of each group and the grand mean.
2. Square each of these differences.

3. Multiply each result by the number of subjects within that group (n)).

4. Add the values for each group together:

SSM = Z n; (J_Cz - Egrand)z

Using the means from the essay data, we can calculate SSy, as follows:

SSy; = 8(68.875 — 63.9375)% + 8 (64.25 — 63.9375) + 8 (65.25 — 63.9375)% +...
+8(57.375 - 63.9375)*

=8(4.9375)% +8(0.3125)% + 8(1.3125)? + 8(~6.5625)*
= 554125

For SSy, the degrees of freedom (dfy) are again one less than the number of things used to calculate
the sum of squares. For the model sums of squares we calculated the sum of squared errors between
the four means and the grand mean. Hence, we used four things to calculate these sums of squares.
So, the degrees of freedom will be 3. So, as with independent ANOVA, the model degrees of freedom
is always the number of groups (k) minus 1:

dfyy =k-1=3

The residual sum of squares (SSg)

We now know that there are 1706 units of variation to be explained in our data, and that the
variation across our conditions accounts for 1602 units. Of these 1602 units, our experimental
manipulation can explain 554 units. The final sum of squares is the residual sum of squares (SSg),
which tells us how much of the variation cannot be explained by the model. This value is the amount
of variation caused by extraneous factors outside of experimental control (such as natural variation in
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the quality of the essays). Knowing SSy and SSy, already, the simplest way to calculate SSy is to
subtract SSy, from SSy:

SSR = SSW _SSM
=1602.5-554.125
=1048.375

The degrees of freedom are calculated in a similar way:

de :dfw _dfM
=24-3
=21

The mean squares

SSw tells us how much variation the model (e.g. the experimental manipulation) explains and SS; tells
us how much variation is due to extraneous factors. However, because both of these values are
summed values, the number of scores that were summed influences them. As with independent
ANOVA, we eliminate this bias by calculating the average sum of squares (known as the mean
squares, MS), which is simply the sum of squares divided by the degrees of freedom:

SSum _ 554.125
MS,, = =M _ 292.129 _ 184 708
M=gr 3
_ SSp _ 1048375 _

MSy, represents the average amount of variation explained by the model (the systematic variation),
whereas MSg is a gauge of the average amount of variation explained by extraneous variables (the
unsystematic variation).

The F-ratio

The F-ratio is a measure of the ratio of the variation explained by the model and the variation
explained by unsystematic factors. It can be calculated by dividing the model mean squares by the
residual mean squares. You should recall that this is exactly the same as for independent ANOVA:

MS,,

F=¥5,

So, as with the independent ANOVA, the F-ratio is still the ratio of systematic variation to
unsystematic variation. As such, it is the ratio of the experimental effect to the effect on performance
of unexplained factors. For the marking data, the F-ratio is:

_MSy _ 184.708 _
F= MS; ~ 49.923 =3.70

This value is greater than 1, which indicates that the experimental manipulation had some effect
above and beyond the effect of extraneous factors. As with independent ANOVA this value can be
compared against a critical value based on its degrees of freedom (which are dfy, and dfg, which are 3
and 21 in this case).

Task 2

e Repeat the analysis above in R and interpret the results.

First of all we need to load the data:

tutorData<-read.delim("'TutorMarks.dat", header = TRUE)

The data were originally entered into R in the wide format, but we need them to be in the long
format for these analyses. To convert the data into the long format we could execute:
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longTutor<-melt(tutorData, id = "Essay', measured = c('"tutorl’, "tutor2", 'tutor3",
"tutor4d™))
names(longTutor)<-c("Essay', "Tutor™, "Mark'™)

longTutor$Tutor<-factor(longTutor$Tutor, labels = c("Professor Field", "Professor
Smith", "Professor Scrote", "Professor Death™))
longTutor<-longTutor[order(longTutor$Essay), ]

We can now plot an error bar graph by executing:
tutorBar <- ggplot(longTutor, aes(Tutor, Mark))

tutorBar + stat_summary(fun.y = mean, geom = "bar', Ffill = "White", colour = "Black
+ stat_summary(fun.data = mean_cl_boot, geom = "pointrange') + labs(x = "Tutor", y
""Mean Percentage Mark')

The resulting graph should look like this:

60— |

Mean Percentage Mark
N
o
1

20—

I I I I
Professor Field Professor Smith Professor Scrote Professor Death
Tutor

We could have a look at the descriptive statistics by executing:

by(longTutor$Mark, longTutor$Tutor, stat.desc)

longTutor$Tutor: Professor Field

nbr.val nbr.null nbr.na min max range
8.00000000 0.00000000 0.00000000 62.00000000 78.00000000 16.00000000
sum median mean SE.mean CI.mean.0.95 var
551.00000000 68.50000000 68.87500000 1.99497136 4.71735765 31.83928571
std.dev coef .var

5.64263110 0.08192568

longTutor$Tutor: Professor Smith

nbr.val nbr.null nbr.na min max range
8.00000000 0.00000000 0.00000000 58.00000000 73.00000000 15.00000000
sum median mean SE.mean CI.mean.0.95 var
514.00000000 64.50000000 64.25000000 1.66636902 3.94033660 22.21428571
std.dev coef .var

4.71320334 0.07335725

longTutor$Tutor: Professor Scrote

nbr.val nbr.null nbr.na min max range
8.0000000 0.0000000 0.0000000 54.0000000 75.0000000 21.0000000
sum median mean SE.mean CI.mean.0.95 var
522.0000000 66.0000000 65.2500000 2.4476665 5.7878116 47.9285714
std.dev coef .var
6.9230464 0.1061003
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longTutorsTutor: Professor Death

nbr.val nbr.null nbr.na min max range
8.0000000 0.0000000 0.0000000 45.0000000 65.0000000 20.0000000
sum median mean SE.mean CI.mean.0.95 var
459.0000000 60.0000000 57.3750000 2.7962826 6.6121577 62.5535714
std.dev coef .var
7.9090816 0.1378489

From the descriptive statistics and the error bar graph we can see that, on average, Professor Field
gave the highest marks to the essays (that’s because I’'m so nice, you see ... or it could be because I'm
stupid and so have low academic standards?). Professor Death, on the other hand, gave very low
grades. These mean values are useful for interpreting any effects that may emerge from the main
analysis.

Next we need to set some orthogonal contrasts so that we can look at Type Ill sums of squares. Let’s
imagine we had reason to believe that Professor Death was a particularly harsh marker compared to
all the other professors. Therefore, our first contrast might compare Professors Field, Smith and
Scrote (combined) to Professor Death. We might also predict that Professor Field would be more
generous in his marking than Professors Scrote and Smith and so our next contrast could compare
Professor Field to Professor Scrote and Professor Smith (combined). We then need a third contrast to
separate Professor Scrote from Professor Smith.

To set these orthogonal contrasts we can first create variables representing each contrast and then
bind these variables together and set then as the contrast for Tutor:

NicevsNasty<-c(1, 1, 1, -3)

FieldvsScroteSmith<-c(2, -1, -1, 0)

ScrotevsSmith<-c(0, 1, -1, 0)

contrasts(longTutor$Tutor)<-cbind(NicevsNasty, FieldvsScroteSmith, ScrotevsSmith)

Next we can conduct the ezANOVA by executing:
tutorModel<-ezANOVA(data = longTutor, dv = _(Mark), wid = _(Essay), within =
- (Tutor), type = 3, detailed = TRUE)

$ANOVA

Effect DFn DFd SSn Ssd F P p<.05
(Intercept) 1 7 130816.125 103.375 8858.165659 4.027213e-12 *
Tutor 3 21 554.125 1048.375 3.699893 2.784621e-02 *

ges
0.9912725
0.3248333

$ Mauchly's Test for Sphericity’

Effect W P p<.05
2 Tutor 0.1310624 0.04305676 *

$~Sphericity Corrections™

Effect GGe p [GG] p[GG]l<.05 HFe p [HF] p[HF]<.05
2 Tutor 0.5576185 0.06287878 0.7122543 0.04712856 *

The output above shows the results from the ezZANOVA(). We'll begin with the sphericity information.
Mauchly’s test for sphericity should be non-significant if we are to assume that the condition of
sphericity has been met. The important column is the one containing the significance value (p) and in
this case the value, .043, is less than the critical value of .05, so we reject the assumption that the
variances of the differences between levels are equal. In other words, the assumption of sphericity
has been violated, W = .13, p = .043.

R produces two corrections based upon the estimates of sphericity advocated by Greenhouse and
Geisser (1959) and Huynh and Feldt (1976). Both of these estimates give rise to a correction factor
that is applied to the degrees of freedom used to assess the observed F-ratio. The Greenhouse—
Geisser correction varies between 1/(k—1) (where k is the number of repeated-measures conditions)
and 1. The closer that & is to 1.00, the more homogeneous the variances of differences, and hence
the closer the data are to being spherical. In a situation in which there are four conditions (as with our
data) the lower limit of & will be 1/(4—1), or .33 (known as the lower-bound estimate of sphericity).
The calculated value of & in the output is .558. This is closer to the lower limit of .33 than it is to the
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upper limit of 1 and it therefore represents a substantial deviation from sphericity. We will see how
these values are used in the next section.

The main ANOVA

The output also shows the results of the ANOVA for the within-subjects variable. This table can be
read much the same as for one-way between-group ANOVA. There is a sum of squares for the
repeated-measures effect of tutor, which tells us how much of the total variability is explained by the
experimental effect. Note the value is 554.125, which is model sum of squares (SSy) that we
calculated in the previous task. There is also an error term (ssd in the output), which is the amount of
unexplained variation across the conditions of the repeated-measures variable. This is the residual
sum of squares (SSg) that was calculated earlier, and note the value is 1048.375 (which is the same
value as calculated). As | explained earlier, these sums of squares are converted into mean squares by
dividing by the degrees of freedom. As we saw before, the df for the effect of tutor (DFn in the
output) is simply k-1, where k is the number of levels of the independent variable. The error df (DFd
in the output) is (n—1)(k—1), where n is the number of participants (or in this case, the number of
essays) and k is as before. The F-ratio is obtained by dividing the mean squares for the experimental
effect (184.708) by the error mean squares (49.923). As with between-group ANOVA, this test statistic
represents the ratio of systematic variance to unsystematic variance. The value of F = 3.70 (the same
as we calculated earlier) is then compared against a critical value for 3 and 21 degrees of freedom. R
displays the exact significance level for the F-ratio. The significance of F is .028, which is significant
because it is less than the criterion value of .05. We can, therefore, conclude that there was a
significant difference between the marks awarded by the four lecturers. However, this main test does
not tell us which lecturers differed from each other in their marking.

Although this result seems very plausible, we have learnt that the violation of the sphericity
assumption makes the F-test inaccurate. We know from Mauchly’s test that these data were non-
spherical and so we need to make allowances for this violation. The R output also contains p-values
that have been corrected using the Greenhouse—Geisser, and Huynh—Feldt; these are labelled p[GG]
and p[HF], respectively. For these data the corrections result in the observed F being non-significant
when using the Greenhouse—Geisser correction (because p = .06, which is greater than .05). However,
it was noted earlier that this correction is quite conservative, and so can miss effects that genuinely
exist. It is, therefore, useful to consult the Huynh—Feldt-corrected F-statistic. Using this correction, the
F-value is still significant because the probability value of .047 is just below the criterion value of .05.
So, by this correction we would accept the hypothesis that the lecturers differed in their marking.
However, it was also noted earlier that this correction is quite liberal and so tends to accept values as
significant when, in reality, they are not significant. This leaves us with the puzzling dilemma of
whether or not to accept this F-statistic as significant. | mentioned earlier that Stevens (2002)
recommends taking an average of the two estimates, and certainly when the two corrections give
different results (as is the case here) this is wise advice. If the two corrections give rise to the same
conclusion it makes little difference which you choose to report (although if you accept the F-statistic
as significant it is best to report the conservative Greenhouse—Geisser estimate to avoid criticism!).
Although it is easy to calculate the average of the two correction factors and to correct the degrees of
freedom accordingly, it is not so easy to then calculate an exact probability for those degrees of
freedom. Therefore, should you ever be faced with this perplexing situation (though, to be honest,
that’s fairly unlikely) | recommend taking an average of the two significance values to give you a
rough idea of which correction is giving the most accurate answer. In this case, the average of the two
p-values is (.063 + .047)/2 = .055. Therefore, we should probably go with the Greenhouse—Geisser
correction and conclude that the F-ratio is non-significant.

These data illustrate how important it is to use a valid critical value of F: it can mean the difference
between a statistically significant result and a non-significant result. More important, it can mean the
difference between making a Type | error and not. Had we not used the corrections for sphericity we
would have concluded erroneously that the markers gave significantly different marks. However, |
should quantify this statement by saying that this example also highlights how arbitrary it is that we
use a .05 level of significance. These two corrections produce significance values only marginally less
than or more than .05, and yet they lead to completely opposite conclusions! So, we might be well
advised to look at an effect size to see whether the effect is substantive regardless of its significance.

PROFESSOR ANDY P FIELD

25



DISCOVERING STATISTICS USING R

We also saw earlier that a final option, when you have data that violate sphericity, is to use
multivariate test statistics (MANOVA) because they do not make this assumption (see O’Brien &
Kaiser, 1985).

The interpretation of these results should stop now because the main effect is non-significant.
However, we will look at the output for post hoc tests and contrasts to illustrate how these are
displayed in R.

Post hoc tests
For post hoc tests we can use the pairwise.t.test() function. To get a post hoc test for the current data,
execute:

pairwise.t.test(longTutor$Mark, longTutor$Tutor, paired = TRUE, p.adjust.method =
"bonferroni')

Pairwise comparisons using paired t tests
data: longTutorsMark and longTutor$Tutor

Professor Field Professor Smith Professor Scrote
Professor Smith 0.022 -
Professor Scrote 1.000 1.000 N
Professor Death 0.261 0.961 0.637

P value adjustment method: bonferroni

By looking at the significance values we can see that the only difference between group means is
between Professor Field and Professor Smith (p = .022). Looking at the means of these groups, we can
see that | give significantly higher marks than Professor Smith. However, there is a rather anomalous
result in that there is no significant difference between the marks given by Professor Death and
myself (p = .261) even though the mean difference between our marks is higher (11.5) than the mean
difference between myself and Professor Smith (4.6). The reason for this result is the sphericity in the
data. The interested reader might like to run some correlations between the four tutors’ grades. You
will find that there is a very high positive correlation between the marks given by Professor Smith and
myself (indicating a low level of variability in our data). However, there is a very low correlation
between the marks given by Professor Death and myself (indicating a high level of variability between
our marks). It is this large variability between Professor Death and myself that has produced the non-
significant result despite the average marks being very different (this observation is also evident from
the standard errors).

However, the significant contrast should be ignored because of the non-significant main effect
(remember that the data did not obey sphericity). The important point to note is that the sphericity in
our data has led to some important issues being raised about correction factors, and about applying
discretion to your data (it's comforting to know that the computer does not have all of the answers,
but it’s slightly alarming to realize that this means we have to actually know some of the answers
ourselves). In this example we would have to conclude that no significant differences existed between
the marks given by different lecturers. However, the ambiguity of our data might make us consider
running a similar study with a greater number of essays being marked.

Unfortunately, when using ezANOVA() you cannot view the contrasts that you specified, which is
why it is better to use Ime().

Reporting one-way repeated-measures ANOVA
We could report the main finding as follows:
v' The results show that the mark of an essay was not significantly affected by the lecturer who
marked it, F(1.67, 11.71) = 3.70, p > .05.

If you choose to report the sphericity test as well:

v" Mauchly’s test indicated that the assumption of sphericity had been violated, W = .13, p =
.043, therefore degrees of freedom were corrected using Greenhouse—Geisser estimates of
sphericity (€ = .56). The results show that the mark of an essay was not significantly affected
by the lecturer who marked it, F(1.67, 11.71) = 3.70, p > .05.
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Remember that because the main ANOVA was not significant we shouldn’t report any further
analysis.

Using Ime()

If we want to look at the overall main effect then we need to compare the model containing the
predictor from a baseline that includes no predictors other than the intercept. We can specify the
baseline model as we did in the chapter:

baseline<-Ime(Mark ~ 1, random = ~1|Essay/Tutor, data = longTutor, method = "ML"™)

To see the overall effect of Tutor we need to add it to the model. To do this we would execute:

tutorModel<-Ime(Mark ~ Tutor, random = ~1]|Essay/Tutor, data = longTutor, method =
ML)

However, it is quicker to use the update() function by executing:

tutorModel<-update(baseline, .~. + Tutor)

This command takes the model called baseline (which we have already created), and the .~. means
keep the outcome and predictors the same as the baseline model. The + Tutor means ‘add Tutor as a
predictor’. Executing this command creates a model called tutorModel that includes Tutor as a
predictor. By comparing these two models (baseline and tutorModel) we can see whether adding the
variable Tutor as a predictor significantly improves the model (in other words, by using group means
to predict the essay mark — does the model fit the data better than when we don’t include this
predictor?). To compare the models execute:

anova(baseline, tutorModel)

Model df AIC BIC logLik Test L.Ratio P-Value
baseline 1 4 226.0472 231.9101 -109.0236
tutorModel 2 7 219.4777 229.7379 -102.7389 1 vs 2 12.56946 .0057

The output above shows the comparison of the baseline model and the model that includes Tutor as
a predictor (tutorModel). The degrees of freedom between the models change from 4 to 7, which is a
difference of 3. This is because Tutor has been coded with three contrasts, which means that three
parameters (one for each contrast) have been added to the model. The AIC and BIC tell us about the
fit of the model (smaller values mean a better fit). The fact that these values are smaller in the final
model than the baseline tells us that the fit of the model has improved. The likelihood ratio (L.Ratio
in the output) tells us whether this improvement in fit is significant, which it is because the p-value of
.0057 is less than .05. Therefore, Tutor is a significant predictor of Mark. We can conclude then that
the tutor marking the essay had a significant effect on the mark that was awarded, #*(3) = 12.57, p =
.006.

We can further explore the model by executing:

summary (tutorModel)

Formula: ~1 | Tutor %in% Essay
(Intercept) Residual
StdDev: 5.999271 0.0305077

Fixed effects: Mark ~ Tutor
Value Std.Error DF t-value p-value

(Intercept) 63.9375 1.1337704 21 56.39369 0.0000
TutorNicevsNasty 2.1875 0.6545826 21 3.34182 0.0031
TutorFieldvsScroteSmith 1.3750 0.9257196 21 1.48533 0.1523
TutorScrotevsSmith -0.5000 1.6033934 21 -0.31184 0.7582
Correlation:

(Intr) TtrNcN TtrFSS
TutorNicevsNasty 0
TutorFieldvsScroteSmith 0 0
TutorScrotevsSmith 0 0 0
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The output above shows the parameter estimates for the model. Most important, these include the
parameters for the three contrasts that we set. First, when we compare tutors who are considered to
be nice (Professors Field, Scrote and Smith) to tutors who are considered to be nasty (Professor
Death), essay marks were significantly different, b = 2.19, t(21) = 3.34, p = .003. From the descriptive
statistics that we obtained earlier we can see that Professors Field, Scrote and Smith ((68.88 + 65.25 +
64.25)/3 = 66.13) gave significantly higher marks than Professor Death (M = 57.38). The second
contrast tells us that there was no significant difference between the marks given by Professor Field
and the marks given by Professors Smith and Scrote (combined), b = 1.38, t(21) = 1.49, p = .152. The
final contrast tells us that there was no significant difference between the marks given by Professor
Scrote and those given by Professor Smith, b = —-0.5, t(21) = —-0.31, p = .758.

Although the contrasts are informative, if there had been no logical set of contrasts to do we might
have done post hoc tests. We can do this using the glht() function. To get post hoc tests for the
current data, we would execute:

postHocs<-glht(tutorModel, linfct = mcp(Tutor = "Tukey'))
summary (postHocs)

confint(postHocs)

Linear Hypotheses:
Estimate Std. Error z value

Professor Smith - Professor Field == 0 -4.625 3.000 -1.542

Professor Scrote - Professor Field == 0 -3.625 3.000 -1.208

Professor Death - Professor Field == 0 -11.500 3.000 -3.834

Professor Scrote - Professor Smith == 0 1.000 3.000 0.333

Professor Death - Professor Smith == 0 -6.875 3.000 -2.292

Professor Death - Professor Scrote == 0 -7.875 3.000 -2.625
Pr(>|z]|)

Professor Smith - Professor Field == 0 0.4124

Professor Scrote - Professor Field == 0 0.6214

Professor Death - Professor Field == 0 <0.001 ***

Professor Scrote - Professor Smith == 0 0.9872

Professor Death - Professor Smith == 0 0.1001

Professor Death - Professor Scrote 0 0.0432 *

Simultaneous Confidence Intervals
Multiple Comparisons of Means: Tukey Contrasts
Linear Hypotheses:

Estimate lwr upr
.6250 -12.3305 3.0805

o
I
IS

Professor Smith - Professor Field

Professor Scrote - Professor Field == 0 -3.6250 -11.3305 4.0805
Professor Death - Professor Field == 0 -11.5000 -19.2055 -3.7945
Professor Scrote - Professor Smith == 0 1.0000 -6.7055 8.7055

o

-6.8750 -14.5805 0.8305
-7.8750 -15.5805 -0.1695

Professor Death - Professor Smith =
Professor Death - Professor Scrote

Il
o

The output above shows the results of the post hoc tests. We can see that Professor Death gave
significantly lower essay marks than Professors Field (p < .001) and Scrote (p = .043). However, none
of the other comparisons between tutors were significant.

Effect sizes
If we make sure that we have executed the rcontrast function from the book:

rcontrast<-function(t, df)
{r<-sqrt(t"2/(t"2 + df))
print(paste("'r = ", r))

}

we can use it to calculate r for the contrasts we did by executing these commands (the values of t and
df come from the output for summary(tutorModel):

rcontrast(3.34182, 21)
rcontrast(1.48533, 21)
rcontrast(-0.31184,21)
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[1] "r= 0.589213430732642"
[1] "r = 0.308333624869346"
[1] "r = 0.0678920554095802"

These show that the difference between the nice tutors and Professor Death was a large effect (r =
.59), between Professors Smith and Scrote (combined) and Professor Field was a medium effect (r =
.31), but between Professors Smith and Scrote a small effect (r = .07).

Reporting the results

As we have made a multilevel model, we need to report our results differently than when we use
ezANOVA. Marks were significantly affected by the tutor who marked the essay, ¥’ (3) = 12.57, p =
.006. Orthogonal contrasts revealed that tutors who were considered to be generous markers
(Professors Field, Scrote and Smith) gave significantly higher essay marks than Professor Death, b =
2.19, t(21) = 3.34, p = .003; there was no significant differences between the marks given by Professor
Field and Professors Smith and Scrote (combined), b = 1.38, t(21) = 1.49, p = .152 or between the
marks given by Professor Scrote and those given by Professor Smith, b =—0.5, t(21) =-0.31, p =.758.

Robust ANOVA

Just for practice, let’s also run a robust ANOVA on these data. The functions for the robust methods

need the data to be in wide format rather than long. However, the data we originally loaded in were

in this format so we can simply reuse these (remember they are stored in an object called tutorData).
We want only the scores, so we need to get rid of the Essay variable. The Essay variable is in the first

column, so we could create a new data frame (tutordata2) that excludes this first column by

executing:

tutorData2<-tutorData[, -c(1)]

Assuming we are happy with the default level of trimming, we can do one-way repeated measures
ANOVA based on trimmed means by executing:

rmanova(tutorData2)

If we wanted to do a one-way repeated measured ANOVA based on 2000 bootstrap samples, then we
could execute:

rmanovab(tutorData2, nboot = 2000)

rmanova() Rmanovab()
[1] "The number of groups to be compared [1] "The number of groups to be compared
iS" iS"
[1] 4 [1] 4
Stest Steststat
[1] 2.348734 [1] 2.348734
$df $crit
[1] 1.994226 9.971132 [1] 5.625

Ssiglevel
[1] 0.1460211

Stmeans

[1] 68.50000 63.83333 65.50000 58.16667

Sehat
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[1] 0.5322935

Setil
[1] 0.6647422

The table above shows the output of both these commands. For rmanova() (left-hand side of the
table) we are given a test statistic, F, for the effect of tutor (Stest), the degrees of freedom (Sdf), the
p-value (Ssiglevel) and the group means(Stmeans). Given that the significance level (0.146) is greater
than .05, we can say that there was no significant differences in marks when the essays were marked
by the different tutors, F(1.99, 9.97) = 2.35, p = .146. (Note that | have reported the test statistic, its
degrees of freedom and the p-value, which you can find in the output.)

The output of rmanovab() (right-hand side of the table) tells us much the same things but we get
only a test statistic (Steststat) and the critical value for this statistic at a .05 level of significance
(Scrit). If the test statistic is significant then the test statistic should be greater than the critical value.
In this case, the test statistic (2.35) is less than the critical value (5.63), indicating no significant
differences in marks between tutors, F = 2.35, F.;; = 5.63, p > .05. Both of these robust methods yield
non-significant results (unlike the original ANOVA).

The post hoc tests for each analysis are conducted using the same command structure. Assuming
you leave the default options, to run post hoc tests based on a 20% trimmed mean, we execute:

rmmcp (tutorData2)
Stest

Group Group test p.value p.crit se
[1,] 1 2 14.0532321 3.282054e-05 0.00851 0.2727724
[2,] 1 3 0.8549393 4.316329e-01 0.02500 4.0938579
[3,1 1 4 1.4101496 2.175644e-01 0.01020 7.5642093
[4,] 2 3 -0.4022510 7.041190e-01 0.05000 3.3146800
[5,] 2 4 0.9388455 3.909130e-01 0.01690 5.8582588
[6,1 3 4 1.2214564 2.763582e-01 0.01270 5.1850671
Spsihat

Group Group psihat ci.lower ci.upper
[1,1 1 2 3.833333 2.682422 4.984244
[2,] 1 3 3.500000 -13.773252 20.773252
[3,1 1 4 10.666667 -21.249070 42.582404
[4,] 2 3 -1.333333 -15.318993 12.652326
[5,] 2 4 5.500000 -19.217805 30.217805
[6,1 3 4 6.333333 -15.544067 28.210734
Scon

[,1]
[1,1 0
Snum.sig
[11 1

In the output above, if the value of p.value is less than the critical value (p.crit) and the confidence
interval does not cross zero then the comparison is significant. The columns labeled group tells you
which groups are being compared (the numbers relate to columns in the dataframe).

v" [1,] tests the difference between Professor Field and Professor Smith. This contrast is
significant because p.value (.000) is less than p.crit (.008) and the confidence interval does
not cross zero.

v' [2] tests the difference between Professor Field and Professor Scrote. This contrast is not
significant because p.value (.432) is greater than p.crit (.025) and the confidence interval
Crosses zero.

v' [3] tests the difference between Professor Field and Professor Death. This contrast is not
significant because p.value (.218) is greater than p.crit (.010) and the confidence interval
Crosses zero.
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v' [4] tests the difference between Professor Smith and Professor Scrote. This contrast is not
significant because p.value (.704) is greater than p.crit (.050) and the confidence interval
Crosses zero.

v'[5] tests the difference between Professor Smith and Professor Death. This contrast is not
significant because p.value (.391) is greater than p.crit (.017) and the confidence interval
crosses zero.

v' [6] tests the difference between Professor Scrote and Professor Death. This contrast is not
significant because p.value (.276) is greater than p.crit (.013) and the confidence interval
crosses zero.

We could report that there was a significant difference between the marks given by Professor Field
and Professor Smith, ¥ = 3.83 (2.68, 4.98), p < .05. However, there was no significant difference
between the essay marks given by Professor Field and Professor Scrote, ¥ = 3.50 (-13.77, 20.77), p >
.05 or Professor Death, ¥ = 10.67 (-21.25, 42.58), p > .05. Similarly, there was no significant
difference between the marks given by Professor Smith and Professors Scrote, ¥ = -1.33 (-15.32,
12.65), p > .05, or Death, ¥ = 5.50 (-19.22, 30.22), p > .05, or between Professor Scrote and Professor
Death, ¥ = 6.33 (—15.54, 28.21), p < .05. Note that in each case | have reported psihat and its
confidence interval.

To conduct post hoc tests based on trimmed means and a bootstrap, execute:

pairdepb(tutorData2, nboot = 2000)

Stest

Group Group test se
[1,1 1 2 4.2092178 1.108678
[2,] 1 3 0.9192771 3.263434
[3,] 1 4 1.8441848 5.603198
[4,] 2 3 -0.5380311 3.097714
[5,] 2 4 1.1977475 4.731103
[6,] 3 4 1.5978885 4.589390
Spsihat

Group Group psihat ci.lower ci.upper
[1,] 1 2 4.666667 -Inf Inf
[2,] 1 3 3.000000 -Inf Inf
[3,] 1 4 10.333333 -Inf Inf
[4,] 2 3 -1.666667 -Inf Inf
[5,] 2 4 5.666667 -Inf Inf
[6,] 3 4 7.333333 -Inf Inf
Scrit
[1] Inf

The output above shows the post hoc tests based on trimmed means and a bootstrap (pairdepb). The
interpretation of these results is similar to that for the trimmed means. If the value of test is greater
than the critical value (Scrit) and the confidence interval does not cross zero then the contrast is
significant. Therefore, we’re comparing each value of test against Inf (which means infinite); as you
can see, all values of test are smaller than this value and all their confidence intervals cross zero so we
can conclude that none of the groups differ significantly.

We could again report that (note that the values and confidence intervals for psihat have changed):
there was no significant difference between the marks given by Professor Field and Professor Smith,
VY = 4.67 (—Inf, Inf), p > .05, Professor Scrote, ¥ = 3.00 (—Inf, Inf), p > .05, or Professor Death, ¥ =
10.33 (-Inf, Inf), p > .05. Similarly, there was no significant difference between the marks given by
Professor Smith and Professor Scrote ¥ = —1.67 (—Inf, Inf), p > .05, or Death, ¥ = 5.66 (—Inf, Inf), p >
.05, or between Professor Scrote and Professor Death W = 7.33 (—Inf, Inf), p < .05. Note that in each
case | have reported psihat and its confidence interval.

Task 3

Imagine | wanted to look at the effect alcohol has on the roving eye. The ‘roving eye’ effect is the
propensity of people in relationships to ‘eye up’ members of the opposite sex. | took 20 men and
fitted them with incredibly sophisticated glasses that could track their eye movements and record
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both the movement and the object being observed (this is the point at which it should be apparent
that I’'m making it up as | go along). Over four different nights | plied these poor souls with 1, 2, 3 or 4
pints of strong lager in a nightclub. Each night | measured how many different women they eyed up (a
woman was categorized as having been eyed up if the man’s eye moved from her head to her toe and
back up again). To validate this measure we also collected the amount of dribble on the man’s chin
while looking at a woman. The data are in the file RovingEye.dat. Analyse them with a one-way
ANOVA.

First of all we need to load the data:
rovingData<-read.delim(*'RovingEye.dat"”, header = TRUE)

The data were originally entered into R in the wide format, but we need them to be in the long
format for these analyses. To convert the data into the long format we could execute:

longRoving<-melt(rovingData, id = "Participant”, measured = c("pintl", "pint2",
"pint3", "pintd™))
names(longRoving)<-c("Participant™, "Pint", "Number_of Women'™)

longRoving$Pint<-factor(longRoving$Pint, labels = c("Pintl™, "Pint2", "Pint3",
"Pint4d™))
longRoving<-longRoving[order(longRoving$Participant),]

We can now plot an error bar graph by executing:
rovingBar <- ggplot(longRoving, aes(Pint, Number_of Women))
rovingBar + stat_summary(fun.y = mean, geom = "bar', fill = "White", colour = "Black')
+ stat_summary(fun.data = mean_cl_boot, geom = "pointrange') + labs(x = "Pint", y =
“*Mean Number of Women Eyed Up'™)

The resulting graph should look like this:
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This error bar chart of the roving eye data shows the mean number of women that were eyed up
after different doses of alcohol. It’s clear from this chart that the mean number of women is pretty
similar between 1 and 2 pints, and for 3 and 4 pints, but there is a jump after 2 pints.

Next we need to set some orthogonal contrasts so that we can look at Type Il sums of squares. To
set orthogonal contrasts we can first create variables representing each contrast and then bind these
variables together and set them as the contrast for Pint:

PintlvsMore<-c(3, -1, -1, -1)

Pint4vsPint2andPint3<-c(0, -1, -1, 2)

Pint2vsPint3<-c(0, 1, -1, 0)

contrasts(longRoving$Pint)<-cbind(PintlvsMore, Pint4vsPint2andPint3, Pint2vsPint3)

Next we can run an ezZANOVA by executing:

rovingModel<-ezANOVA(data = longRoving, dv = .(Number_of_Women), wid = .(Participant),
within = _(Pint), type = 3, detailed = TRUE)

rovingModel
$ANOVA

Effect DFn DFd SSn ssd F p p<.05 ges
1 (Intercept) 1 19 14364.8 915.7 298.057442 4.532206e-13 * 0.8875433
2 Pint 3 57 225.1 904.4 4.728992 5.144516e-03 * 0.1100626

$ Mauchly's Test for Sphericity”

Effect W p p<.05
2 Pint 0.4769123 0.02246469 *
$~Sphericity Corrections™

Effect GGe p [GG] p[GG]<.05 HFe p [HF] p[HF]<.05
2 Pint 0.7450699 0.01143403 * 0.849085 0.008241601 *

If we look at the part of the output above that contains Mauchly’s test, we hope to find that it’s non-
significant if we are to assume that the condition of sphericity has been met. However, the
significance value (.022) is less than the critical value of .05, so we accept that the assumption of
sphericity has been violated.

The main ANOVA

The output above also shows the main result of the ANOVA. The significance of F is .005, which is
significant because it is less than the criterion value of .05. We can, therefore, conclude that alcohol
had a significant effect on the average number of women who were eyed up. However, this main test
does not tell us which quantities of alcohol made a difference to the number of women eyed up.

This result is all very nice, but as yet we haven’t done anything about our violation of the sphericity
assumption. This table contains an additional row giving the corrected values of F for two different
types of adjustment (Greenhouse—Geisser and Huynh—Feldt). First we decide which correction to
apply and to do this we need to look at the estimates of sphericity: if the Greenhouse—Geisser and
Huynh-Feldt estimates are less than 0.75 we should use Greenhouse—Geisser, and if they are above
0.75 we use Huynh—Feldt. We discovered in the book that, based on these criteria, we should use
Huynh—Feldt here. Using this corrected value we still find a significant result because the observed p
(.008) is still less than the criterion of .05.

The main effect of alcohol doesn’t tell us anything about which doses of alcohol produced different
results to other doses. So, we might do some post hoc tests as well. We can do some post hoc tests by
executing:

pairwise.t.test(longRoving$Number_of_Women, longRoving$Pint, paired = TRUE,
p-adjust.method = "bonferroni')

Pairwise comparisons using paired t tests

data: longRoving$Number of Women and longRoving$Pint
Pintl Pint2 Pint3

Pint2 1.000 - -

Pint3 0.136 0.038 -

Pint4 0.242 0.202 1.000

P value adjustment method: bonferroni
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The output above shows the table from R that contains these tests. We read down each column and
look for values less than .05. By looking at the significance values we can see that the only difference
between condition means is between 2 and 3 pints of alcohol.

We can view the means and standard deviations by executing:
ezStats(data = longRoving, dv = .(Number_of_Women), wid = .(Participant), within =
-(Pint), type = 3)

Warning: Converting "Participant" to factor for ANOVA.

Note: model has only an intercept; equivalent type-III tests substituted.
Pint N Mean SD FLSD

1 Pintl 20 11.75 4.314907 2.522365

2 Pint2 20 11.70 4.657761 2.522365

3 Pint3 20 15.20 5.800181 2.522365

4 Pint4 20 14.95 4.673272 2.522365

Interpreting and writing the result
We could report the main finding as follows:

v' Mauchly’s test indicated that the assumption of sphericity had been violated, W = .48, p =
.022, therefore degrees of freedom were corrected using Huynh-Feldt estimates of
sphericity (e = .85). The results show that the number of women eyed up was significantly
affected by the amount of alcohol drunk, F(2.55, 48.40) = 4.73, p < .05, r = .40. Bonferroni
post hoc tests revealed a significant difference in the number of women eyed up only
between 2 and 3 pints, p <.05). No other comparisons were significant (all ps > .05).

Using Ime()

If we want to look at the overall main effect then we need to compare the model containing the
predictor from a baseline that includes no predictors other than the intercept. We can specify the
baseline model as we did in the chapter:

baseline<-Ime(Number_of Women ~ 1, random = ~1|Participant/Pint, data =
longRoving, method = "ML'™)

To see the overall effect of Pint we need to add it to the model. To do this we would execute:

rovingModel<-Ime(Number_of_Women ~ Pint, random = ~1]Participant/Pint, data =
longRoving, method = "ML'™)

However, it is quicker to use the update() function by executing:

rovingModel<-update(baseline, .~. + Pint)

This command takes the model called baseline (which we have already created), and the .~. means
keep the outcome and predictors the same as the baseline model. The + Pint means ‘add Pint as a
predictor’. Executing this command creates a model called rovingModel that includes Pint as a
predictor. By comparing these two models (baseline and rovingModel) we can see whether adding
the variable Pint as a predictor significantly improves the model (in other words, by using group
means to predict the number of women eyed up — does the model fit the data better than when we
don’t include this predictor?). To compare the models execute:

anova(baseline, rovingModel)

Model df AIC BIC logLik Test L.Ratio p-value
baseline 1 4 487.6204 497.1485 -239.8102
rovingModel 2 7 480.2849 496.9591 -233.1425 1 vs 2 13.33552 0.004

The output above shows the comparison of the baseline model and the model that includes Pint as a
predictor (rovingModel). The degrees of freedom between the models change from 4 to 7, which is a
difference of 3. This is because Pint has been coded with three contrasts, which means that three
parameters (one for each contrast) have been added to the model. The AIC and BIC tell us about the
fit of the model (smaller values mean a better fit). The fact that these values are smaller in the final
model than the baseline tells us that the fit of the model has got better. The likelihood ratio (L.Ratio
in the output) tells us whether this improvement in fit is significant, which it is because the p-value of
.004 is less than .05. Therefore, the amount drunk is a significant predictor of the number of women
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eyed up. We can conclude, then, that the number of pints consumed had a significant effect on the
number of women that the men eyed up, % (3) = 13.34, p = .004.
We can further explore the model by executing:

summary(rovingModel)

Formula: ~1 | Pint %in% Participant
(Intercept) Residual
StdDev: 3.596012 1.463573

Fixed effects: Number of Women ~ Pint
Value Std.Error DF t-value p-value

(Intercept) 13.40 0.7761653 57 17.264363 0.0000
PintPintlvsMore -0.55 0.2571209 57 -2.139071 0.0367
PintPint4vsPint2andPint3 0.50 0.3636239 57 1.375047 0.1745
PintPint2vsPint3 -1.75 0.6298151 57 -2.778593 0.0074
Correlation:

(Intr) PntP1M PP4P2P
PintPintlvsMore 0
PintPint4vsPint2andPint3 0 0
PintPint2vsPint3 0 0 0

The output above shows the parameter estimates for the model. Most important, these include the
parameters for the three contrasts that we set. First, when we compare 1 pint to more than 1 pint (2,
3 and 4 pints) the number of women eyed up were significantly different, b = —0.55, t(57) = —-2.14, p =
.04. From the descriptive statistics that we obtained earlier we can see that 2 pints, 3 pints and 4 pints
((11.70 + 15.20 + 14.95)/3 = 13.95) resulted in significantly more women being eyed up than 1 pint (M
= 11.75). The second contrast tells us that there was no significant difference between drinking 4
pints and drinking 2 or 3 pints (combined), b = 0.50, t(57) = 1.38, p = .17. The final contrast tells us
that there was a significant difference between drinking 2 pints and drinking 3 pints, b = —1.75, t(57) =
—2.78, p = .00; looking at the means, we can see that after drinking 3 pints men eyed up significantly
more women than after drinking 2 pints.

Although the contrasts are informative, if there had been no logical set of contrasts to do we might
have done post hoc tests. We can, do this using the glht() function. To get post hoc tests for the
current data, we would execute:

postHocs<-glht(rovingModel, linfct = mcp(Pint = "Tukey'))
summary (postHocs)
confint(postHocs)

Linear Hypotheses:

Estimate Std. Error z value Pr(>|z|)

(>
Pint2 - Pintl == 0 -0.050 1.228 -0.041 1.0000
Pint3 - Pintl == 0 3.450 1.228 2.810 0.0257 *
Pint4 - Pintl == 0 3.200 1.228 2.606 0.0452 *
Pint3 - Pint2 == 0 3.500 1.228 2.851 0.0226 *
Pint4 - Pint2 == 0 3.250 1.228 2.647 0.0409 *
Pint4 - Pint3 == 0 -0.250 1.228 -0.204 0.9970

Simultaneous Confidence Intervals
Multiple Comparisons of Means: Tukey Contrasts

Linear Hypotheses:

Estimate lwr upr
Pint2 - Pintl == 0 -0.05000 -3.20301 3.10301
Pint3 - Pintl == 0 3.45000 0.29699 6.60301
Pint4 - Pintl == 0 3.20000 0.04699 6.35301
Pint3 - Pint2 == 0 3.50000 0.34699 6.65301
Pint4 - Pint2 == 0 3.25000 0.09699 6.40301
Pint4 - Pint3 == 0 -0.25000 -3.40301 2.90301

The output above shows the results of the post hoc tests. We can see that there was a significant
difference between: (1) 1 pint and 3 pints (p < .05); (2) 4 pints and 1 pint (p < .05); (3) 2 pints and 3
pints (p < .05); and (4) 4 pints and 2 pints (p < .05). However, there was no significant difference
between drinking 1 pint and 2 pints (p = 1.00), or between drinking 3 pints and 4 pints (p = 1.00).

Effect sizes
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If we make sure that we have executed the rcontrast function from the book, we can use it to
calculate r for the contrasts we did by executing these commands (the values of t and df come from
the output for summary(rovingModel):

rcontrast(-2.139071, 57)
rcontrast(1.375047, 57)
rcontrast(-2.778593, 57)

[1] "r= 0.272596820779416"

[1] "r= 0.179181836930639"

[1] "r = 0.345385212987429"

which show that the difference between drinking 1 pint and more than 1 pint (2, 3 or 4 pints) was a
medium effect (r = .27), between drinking 4 pints and less than 4 pints (1, 2 or 3 pints) was a small to
medium effect (r =.18), and between 2 and 3 pints was a medium to large effect (r = .35).

Reporting the Results

As we have made a multilevel model, we need to report our results differently than when we use
ezANOVA. The results show that the number of women eyed up was significantly affected by the
amount of alcohol drunk, z*(3) = 13.34, p = .004. Orthogonal contrasts revealed that drinking more
than 1 pint resulted in significantly more women being eyed up, b = —0.55, t(57) = —2.14, p = .04;
there was no significant difference between drinking 4 pints and drinking 2 and 3 pints (combined), b
=0.50, t(57) = 1.38, p = .17. However, significantly more women were eyed up after 3 pints than after
2 pints, b =-1.75, t(57) =-2.78, p < .01.

Task 4

In the previous chapter we came across the beer-goggles effect, a severe perceptual distortion after
imbibing alcohol that makes previously unattractive people suddenly become the hottest thing since
Spicy Gonzalez’s extra-hot Tabasco-marinated chillies. Imagine we followed up the fabricated
example from the previous chapter to look at whether the beer-goggles effect is made worse by the
fact that it usually occurs in clubs that have dim lighting. We took a sample of 26 men (because the
effect is stronger in men) and gave them various doses of alcohol over four different weeks (0 pints, 2
pints, 4 pints and 6 pints of lager). This is our first independent variable. Each week (and, therefore, in
each state of drunkenness) participants were asked to select a mate in a normal club (that had dim
lighting) and then select a second mate in a specially designed club that had bright lighting. As such,
the second independent variable was whether the club had dim or bright lighting. The outcome
measure was the attractiveness of each mate as assessed by a panel of independent judges. To recap,
all participants took part in all levels of the alcohol consumption variable, and selected mates in both
brightly and dimly lit clubs. The data are in the file BeerGogglesLighting.dat. Analyse them with a
two-way repeated-measures ANOVA.

First of all, remember to read in the data and give it a sensible name:
gogglesData<-read.delim(*'BeerGogglesLighting.dat", header = TRUE)
We then need to reshape the data as we did in the book chapter, we can do this by executing:

longGoggles<-melt(gogglesData, id = "Participant', measured = c( "dim0", "bright0",
“dim2™, “bright2", "dim4", "bright4", "dim6", "bright6"))
names(longGoggles)<-c(*'Participant’, "Groups'™, "Attractiveness')

We then need to create separate columns for the two variables Lighting and Pints. We can do this by

executing:
longGoggles$Lighting<-gl(2, 26, 208, labels = c('Dim", "Bright™))
longGoggles$Pints<-gl (4,52, 208, labels = c("'0", "2', 4", "6"))
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longGoggles<-longGoggles[order (longGoggles$Participant),]

The data now look like this (I have only put in a small section to save space):
Participant Groups Attractiveness Lighting Pints

1 dimo 58 Dim 0
1 brighto 65 Bright 0
1 dim2 65 Dim 2
1 bright2 65 Bright 2
1 dim4 44 Dim 4
1 bright4 50 Bright 4

Let’s create a boxplot of the data. We can do this using the reshaped data (longGoggles):

gogglesBoxplot <- ggplot(longGoggles, aes(Pints, Attractiveness))
gogglesBoxplot + geom_boxplot() + facet_wrap(~Lighting, nrow = 1) + labs(x = "Type of
Lighting™, y = "Mean Attractiveness Score')

Dim Bright

Mean Attractiveness Score
.

| | | | | | |
2 4 6 0 2 4 6

Type of Lighting
This box plot displays the mean attractiveness of the partner selected (with error bars) in dim and
brightly lit clubs after the different doses of alcohol. The chart shows that in both dim and brightly lit
clubs there is a tendency for men to select less attractive mates as they consume more and more
alcohol.
We could draw a bar graph of the effect of the number of pints consumed by executing:

pintsBar <- ggplot(longGoggles, aes(Pints, Attractiveness))

pintsBar + stat_summary(fun.y = mean, geom = "bar™, fill = "White", colour = "Black")
+ stat_summary(fun.data = mean_cl_boot, geom = "pointrange') + labs(x = "Number of
Pints™, y = "Mean Attractiveness Score')

The resulting graph should look like this:
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Mean Attractiveness Score
8
;

2
Number of Pints

To plot an error bar graph of the effect of lighting on the attractiveness of the date chosen we would
execute:

lightingBar <- ggplot(longGoggles, aes(Lighting, Attractiveness))

lightingBar + stat _summary(fun.y = mean, geom = "bar™, Ffill = "White", colour =
"Black') + stat_summary(fun.data = mean_cl_boot, geom = “pointrange') + labs(x = "Type
of Lighting", y = "Mean Attractiveness Score')

The resulting graph should look like this:

Mean Attractiveness Score

| |
Dim Bright

Type of Lighting

To plot an interaction graph, to look at the interaction between the number of pints drunk and the
type of lighting on the attractiveness of the woman chosen, we would execute:

gogglesint <- ggplot(longGoggles, aes(Pints, Attractiveness, colour = Lighting))
gogglesint + stat_summary(fun.y = mean, geom = "“point") + stat summary(fun.y = mean,
geom = "line", aes(group= Lighting)) + stat _summary(fun.data = mean_cl_boot, geom =
"errorbar', width = 0.2) + labs(x = "Type of Drink™, y = "Mean Attractiveness Score",
colour = "Type of Lighting™)
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This graph is the same as the boxplot above; it displays the mean attractiveness of the partner
selected (with error bars) in dim and brightly lit clubs after the different doses of alcohol. The chart
shows that in both dim and brightly lit clubs there is a tendency for men to select less attractive
mates as they consume more and more alcohol.

We can request some descriptive statistics by executing:

options(digits = 3)

by (longGoggles$Attractiveness, list(longGoggles$Pints, longGoggles$Lighting),

stat.desc, basic = FALSE)

by (longGoggles$Attractiveness, longGoggles$Pints, stat.desc, basic = FALSE)

by (longGoggles$Attractiveness, longGoggles$Lighting, stat.desc, basic = FALSE)
options(digits = 7)

The resulting output below shows the means for all conditions in a table. These means correspond to
those plotted in the graphs.

> by (longGoggles$Attractiveness, list (longGoggles$Pints, longGoggles$Lighting), stat.desc, basic = FALSE)
: 0

: Dim
median mean SE.mean CI.mean.0.95 var std.dev coef .var
64.000 65.000 2.021 4.163 106.240 10.307 0.159
2
Dim
median mean SE.mean CI.mean.0.95 var std.dev coef .var
67.000 65.462 1.718 3.538 76.738 8.760 0.134
HR
: Dim
median mean SE.mean CI.mean.0.95 var std.dev coef .var
37.500 37.231 2.131 4.388 118.025 10.864 0.292
6
Dim
median mean SE.mean CI.mean.0.95 var std.dev coef .var
20.500 21.308 2.093 4.311 113.902 10.672 0.501
0
Bright
median mean SE.mean CI.mean.0.95 var std.dev coef .var
61.000 61.577 1.903 3.920 94.174 9.704 0.158
: 2
: Bright
median mean SE.mean CI.mean.0.95 var std.dev coef .var
63.500 60.654 2.089 4.302 113.435 10.651 0.176
HR
: Bright
median mean SE.mean CI.mean.0.95 var std.dev coef .var
47.500 50.769 2.028 4.178 106.985 10.343 0.204
6
Bright
median mean SE.mean CI.mean.0.95 var std.dev coef .var
42.500 40.769 2.113 4.352 116.105 10.775 0.264

>by (longGoggless$Attractiveness, longGoggles$Pints, stat.desc, basic = FALSE)
longGoggles$Pints: 0
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median mean SE.mean CI.mean.0.95 var std.dev coef.var

64.000 63.288 1.395 2.801 101.229 10.061 0.159
longGoggles$Pints: 2

median mean SE.mean CI.mean.0.95 var std.dev coef.var

65.000 63.058 1.381 2.772 99.114 9.956 0.158
longGoggles$Pints: 4

median mean SE.mean CI.mean.0.95 var std.dev coef.var

45.500 44.000 1.738 3.489 157.020 12.531 0.285
longGoggles$Pints: 6

median mean SE.mean CI.mean.0.95 var std.dev coef.var

31.000 31.038 2.006 4.028 209.293 14.467 0.466

> by (longGoggles$Attractiveness, longGoggles$Lighting, stat.desc, basic = FALSE)
longGoggles$Lighting: Dim

median mean SE.mean CI.mean.0.95 var std.dev coef.var

49.000 47.250 2.101 4.167 459.180 21.428 0.454
longGoggles$Lighting: Bright

median mean SE.mean CI.mean.0.95 var std.dev coef.var

53.500 53.442 1.304 2.585 176.715 13.293 0.249
> options(digits = 7)

Before we conduct the ANOVA, we need to set some orthogonal contrasts so that we can use type
Il sums of squares. We could set some such contrasts as follows:

NonevsAlcohol<-c(4, -1, -1, -1)
MaxvsLess<-c(0, -1, -1, 2)
TwovsFour<-c(0, 1, -1,0)
DimvsLight<-c(1, -1)

contrasts(longGoggles$Pints)<-cbind(NonevsAlcohol, MaxvsLess, TwovsFour)

Next we can run the two-way ANOVA using ezANOVA by executing:

gogglesModel<-ezANOVA(data = longGoggles, dv = .(Attractiveness), wid =
_(Participant), within = _(Pints, Lighting), type = 3, detailed = TRUE)
options(digits = 3)

gogglesModel
SANOVA

Effect DFn DFd SSn  SSd F p p<.05 ges
1 (Intercept) 1 25 527225 3282 4016.2 3.91e-29 * 0.9614
2 Pints 3 75 38592 9243 104.4 1.06e-26 * 0.6461
3 Lighting 1 25 1994 2128 23.4 5.65e-05 * 0.0862
4 Pints:Lighting 3 75 5765 6487 22.2 2.14e-10 * 0.2143
$ Mauchly's Test for Sphericity’

Effect W P p<.05
2 Pints 0.820 0.454
4 Pints:Lighting 0.898 0.768
S Sphericity Corrections™

Effect GGe p[GG] pl[GG]<.05 HFe p[HF] pl[HF]<.05
2 Pints 0.873 1.32e-23 * 0.984 2.56e-26 *
4 Pints:Lighting 0.936 7.18e-10 * 1.067 2.14e-10 *

The lighting variable had only two levels (dim or bright) and so the assumption of sphericity doesn’t
apply and R doesn’t produce a significance value. However, for the effects of alcohol consumption
and the interaction of alcohol consumption and lighting, we do have to look at Mauchly’s test. The
significance values are both above .05 (they are 0.454 and 0.768, respectively) and so we know that
the assumption of sphericity has been met for both alcohol consumption and the interaction of
alcohol consumption and lighting.

The output above also shows the main ANOVA summary table. The main effect of lighting is shown
by the F-ratio in the row labelled Lighting. The significance of this value is well below the usual cut-off
point of .05. We can conclude that average attractiveness ratings were significantly affected by
whether mates were selected in a dim or well-lit club. We can easily interpret this result further
because there were only two levels: attractiveness ratings were higher in the well-lit clubs (look back
at the error bar graph that we plotted earlier), so we could conclude that when we ignore how much
alcohol was consumed, the mates selected in well-lit clubs were significantly more attractive than
those chosen in dim clubs.
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The main effect of alcohol consumption is shown by the F-ratio in the row labelled Pints. The
probability associated with this F-ratio is reported as .000 (i.e. p < .001), which is well below the
critical value of .05. We can conclude that there was a significant main effect of the amount of alcohol
consumed on the attractiveness of the mate selected. We know that generally there was an effect,
but without further tests (e.g. post hoc comparisons) we can’t say exactly which doses of alcohol had
the most effect. If we look back at the error bar graph that we plotted earlier, we can see that when
you ignore the lighting in the club, the attractiveness of mates is similar after no alcohol and 2 pints of
lager but starts to rapidly decline at 4 pints and continues to decline after 6 pints.

We can look at some post hoc tests for the main affect of alcohol (Pints) by executing:

pairwise.t.test(longGoggles$Attractiveness, longGoggles$Pints, paired = TRUE,
p-adjust.method = "bonferroni')
options(digits = 7)

0 2
1 -
4.8e-09 4.6e-10
< <

4
2 -
4 -
6 2e-16 2e-16 3

.2e-06

P value adjustment method: bonferroni

The above output shows the resulting post hoc tests. In this example I've chosen a Bonferroni
correction. The mean attractiveness was significantly higher after no pints than it was after 4 pints
and 6 pints (both ps are less than .001). We can also see that the mean attractiveness after 2 pints
was significantly higher than after 4 pints and 6 pints (again, both ps are less than .001). Finally, the
mean attractiveness after 4 pints was significantly higher than after 6 pints (p < .001). So, we can
conclude that the beer goggles effect doesn’t kick in until after 2 pints, and that it has an ever-
increasing effect (well, up to 6 pints at any rate!).

The interaction effect is shown by the F-ratio in the row labelled Pints:Lightening. The resulting F-
ratio is 22.22 (1921.81/86.50), which has an associated probability value of less than .001. As such,
there is a significant interaction between the amount of alcohol consumed and the lighting in the club
on the attractiveness of the mate selected.

We could look at some post hoc tests for the interaction between Lighting and Pints by executing:

pairwise.t.test(longGoggles$Attractiveness, longGoggles$Groups, paired = TRUE,
p-adjust.method = "bonferroni')
options(digits = 7)

Pairwise comparisons using paired t tests

data: longGogglesSAttractiveness and longGoggless$SGroups

dimo bright0o dim2 bright2 dim4 bright4 dimé
brighto 1.0000 - - - - - -
dim2 1.0000 1.0000 - - - - -
bright2 1.0000 1.0000 1.0000 - - - -
dim4 9.6e-07 2.3e-07 4.8e-12 1.3e-08 - - -
bright4 0.0100 0.0286 0.0006 0.2057 0.0006 - -
dime 1.1e-13 6.0e-12 9.3e-13 1.3e-11 0.0024 3.3e-08 -
bright6é 2.4e-07 2.1e-07 1.0e-08 2.7e-08 1.0000 0.0617 2.3e-06

P value adjustment method: bonferroni

The resulting output above shows that, when in dim lighting, attractiveness of the partner chosen is
significantly reduced after 4 pints and 6 pints compared with no pints.

Writing the result
We can report the three effects from this analysis as follows:
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v' The results show that the attractiveness of the mates selected was significantly lower when
the lighting in the club was dim compared to when the lighting was bright, F(1, 25) =23.4, p <
.001.

v' The main effect of alcohol on the attractiveness of mates selected was significant, F(3, 75) =
104.4, p < .001. This indicated that when the lighting in the club was ignored, the
attractiveness of the mates selected differed according to how much alcohol was drunk
before the selection was made. Specifically, post hoc tests revealed that, compared to a
baseline of when no alcohol had been consumed, the attractiveness of selected mates was
not different after 2 pints (p > .05), but was significantly lower after 4 and 6 pints (both ps <
.001). The mean attractiveness after 2 pints was also significantly higher than after 4 pints
and 6 pints (both ps < .001), and the mean attractiveness after 4 pints was significantly
higher than after 6 pints (p < .001). To sum up, the beer-goggles effect seems to take effect
after 2 pints have been consumed and has an increasing impact until 6 pints are consumed.

v" The lighting x alcohol interaction was significant, F(3, 75) = 22.2, p < .001, indicating that the
effect of alcohol on the attractiveness of the mates selected differed when lighting was dim
compared to when it was bright.

Using Ime()

If we want to look at the overall main effect then we need to compare the model containing the
predictors from a baseline that includes no predictors other than the intercept. We can specify the
baseline model as we did in the chapter and then add the predictors to the model one at a time:

baseline<-Ime(Attractiveness ~ 1, random = ~1|Participant/Pints/Lighting, data =
longGoggles, method = *""ML'™)

PintsModel<-update(baseline, .~. + Pints)

LightingModel<-update(PintsModel, .~. + Lighting)
gogglesModel<-update(LightingModel, .~. + Pints:Lighting)

By comparing these models (baseline, PintsModel and LightingModel and gogglesModel) we can see
whether adding the variables Pints and Lighting and their interaction as predictors significantly
improves the model (in other words, by using group means to predict the attractiveness of the
women chosen — does the model fit the data better than when we don’t include these predictors?).
To compare the models execute:

anova(baseline, PintsModel, LightingModel, gogglesModel)

Executing the above command produces the output below, which first compares the effect of Pints to
the baseline (i.e., no predictors). By adding Pints as a predictor we increase the degrees of freedom
by 3 (the three contrasts that we used to code this variable) and significantly improve the model. In
other words, the number of pints drunk had a significant effect on attractiveness, ;(2(3) =144.40,p <
.0001. Next, we see the effect of adding the main effect of Lighting into the model (compared to the
previous model that contained only the effect of Pints). The degrees of freedom are increased by 1
(the one contrast used to code this variable) and the fit of the model is significantly improved; the
type of lighting used in the club had a significant effect on attractiveness, ;(2(1) =14.87, p < .001. The
final model (which includes both main effects and the interaction between them) is then compared to
the previous model (which includes only the two main effects). The interaction term significantly
improves the model fit; therefore, attractiveness of the woman chosen was significantly affected by
the combined effect of the number of pints drunk and type of lighting, ;(2(3) =53.82, p <.0001. These
results confirm the overall effects that we looked at with ezZANOVA() in the previous section, and you
should look back at that section to remind yourself of how we interpreted these effects.

Model df AIC BIC logLik Test L.Ratio p-value
baseline 1 5 1770.963 1787.651 -880.4816
PintsModel 2 8 1632.559 1659.259 -808.2793 1 vs 2 144.40462 <.0001
LightingModel 3 9 1619.688 1649.726 -800.8442 2 vs 3 14.87011 le-04
gogglesModel 4 12 1571.870 1611.920 -773.9350 3 vs 4 53.81834 <.0001

We can further explore the model by executing:

summary(gogglesModel)
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The output below shows the parameter estimates for the model (I've edited some of the names to
save space). Most important, these include the parameters for the contrasts that we set for each
variable. First, we get the three contrasts for Pints, which show a significant effect on attractiveness
when comparing no alcohol to some alcohol, b = 4.73, t(75) = 10.21, p = .00, when comparing 6 pints
to 2 and 4 pints (combined), b = —10.01, t(75) =-12.22, p = .00, and when comparing 2 pints to 4 pints,
b =14.12, t(75) = 9.95, p = .00.

Next, we get the contrast for Lighting, which shows a significant effect on attractiveness when
comparing dim lighting to bright lighting, b = 6.74, t(114) = 17.26, p < .001, and when comparing
positive to neutral imagery, b = 6.83, t(100) = 5.27, p < .001. The next three effects are the contrasts
for the interaction term which were all found to be significant (all ps < .0001).

Formula: ~1 | Lighting %in% Pints %in% Participant
(Intercept) Residual
StdDev: 8.78435 2.382856

Fixed effects: Attractiveness ~ Pints + Lighting + Pints:Lighting
Value Std.Error DF t-value p-value

(Intercept) 46.06667 1.0289595 100 44.77015 0
NonevsAlcohol 4.73333 0.4634222 75 10.21387 0
MaxvsLess -10.01282 0.8192225 75 -12.22235 0
TwovsFour 14.11538 1.4189349 75 9.94787 0
LightingBright 6.83333 1.2957421 100 5.27368 0
NonevsAlcohol:LightingBright -2.56410 0.5945273 100 -4.31284 0
MaxvsLess:LightingBright 5.03205 1.0509856 100 4.78794 0
TwovsFour:LightingBright -9.17308 1.8203605 100 -5.03915 0
Correlation:

(Intr) PntsNA PntsML PntsTF LghtnB PNA:LB PML:LB
PintsNonevsAlcohol -0.113
PintsMaxvsLess 0.000 0.000
PintsTwovsFour 0.000 0.000 0.000
LightingBright -0.630 0.074 0.000 0.000
PintsNonevsAlcohol:LightingBright 0.072 -0.641 0.000 0.000 -0.115
PintsMaxvsLess:LightingBright 0.000 0.000 -0.641 0.000 0.000 0.000
PintsTwovsFour:LightingBright 0.000 0.000 0.000 -0.641 0.000 0.000 0.000

Effect sizes

If we make sure that we have executed the rcontrast function from the book, we can use it to
calculate r for the contrasts we did by executing these commands (the values of t and df come from
the output for summary(gogglesModel):

rcontrast( 10.21387, 75)
rcontrast(-12.22235, 75)
rcontrast(9.94787, 75)

rcontrast(5.27368, 100)
rcontrast(-4.31284, 100)
rcontrast(4.78794, 100)
rcontrast(-5.03915, 100)

[1] "r = 0.762732334903438"
[1] "r = 0.81593768690933"
[1] "r = 0.754232522082961"
[1] "r = 0.466475100455845"
[1] "r = 0.396022557480187"
[1] "r = 0.431846799011667"
[1] "r = 0.450008361154144"
Writing the result

v The number of pints drunk had a significant effect on attractiveness, z*(3) = 144.40, p <
.0001, as did the type of lighting used in the room, 7’ (1) = 14.87, p < .001. Most important,
the pints x lighting interaction was significant, »°(3) = 53.82, p < .0001. Contrasts on this
interaction term revealed that: (1) drinking some alcohol compared to drinking no alcohol
resulted in significantly less attractive women being chosen, and this effect was significantly
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greater when the room lighting was dim compared to when it was bright, t(100) = -4.31, p =
.00, r = .40; (2) drinking 6 pints compared with drinking 2 and 4 pints (combined) resulted in
significantly less attractive women being chosen, and again this effect was significantly
greater when in dim lighting than when in bright lighting, t(100) = 4.79, p < .001, r = .43; (3)
drinking 4 pints compared to drinking 2 pints resulted in significantly less attractive women
being chosen, and this effect was once again significantly greater when dim lighting was used
than when bright lighting was used, t(100) = -5.04, r = .45. To sum up, there was a significant
interaction between the amount of alcohol drunk and the lighting in the club, an interaction
graph revealed that the decline in the attractiveness of the selected mate seen after 2 pints
(compared to after 4) was significantly more pronounced when the lights were dim.
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